安徽省黄山市普通高中2023年高二上数学期末监测试题含解析_第1页
安徽省黄山市普通高中2023年高二上数学期末监测试题含解析_第2页
安徽省黄山市普通高中2023年高二上数学期末监测试题含解析_第3页
安徽省黄山市普通高中2023年高二上数学期末监测试题含解析_第4页
安徽省黄山市普通高中2023年高二上数学期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市普通高中2023年高二上数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.惊艳全世界的南非双曲线大教堂是由伦敦著名的建筑事务所完成的,建筑师的设计灵感源于想法:“你永无止境的爱是多么的珍贵,人们在你雄伟的翅膀下庇护”.若将如图所示的双曲线大教堂外形弧线的一段近似看成双曲线()下支的一部分,且此双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B.C. D.2.已知函数,若函数有3个零点,则实数的取值范围是()A. B.C. D.3.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线4.若抛物线的准线方程是,则抛物线的标准方程是()A. B.C. D.5.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1 B.2C.3 D.46.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27187.在中,已知点在线段上,点是的中点,,,,则的最小值为()A. B.4C. D.8.直线的倾斜角为()A. B.C. D.9.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.10.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.11.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.12.已知数列满足,且,为其前n项的和,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.14.i为虚数单位,复数______15.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________16.已知函数有三个零点,则正实数a的取值范围为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,底面是直角梯形,其中,,,,为棱上的点,且.(1)求证:平面;(2)求二面角的正弦值;(3)设为棱上的点(不与,重合),且直线与平面所成角的正弦值为,求的值.18.(12分)已知A,B两地相距200km,某船从A地逆水到B地,水速为8km/h,船在静水中的速度为vkm/h(v>8).若船每小时的燃料费与其在静水中速度的平方成正比,比例系数为k,当v=12km/h,每小时的燃料费为720元(1)求比例系数k(2)当时,为了使全程燃料费最省,船的实际前进速度应为多少?(3)当(x为大于8的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少?19.(12分)如图,已知抛物线的焦点为F,抛物线C上的点到准线的最小距离为1(1)求抛物线C的方程;(2)过点F作互相垂直的两条直线l1,l2,l1与抛物线C交于A,B两点,l2与抛物线C交于C,D两点,M,N分别为弦AB,CD的中点,求|MF|·|NF|的最小值20.(12分)设函数.(1)讨论函数在区间上的单调性;(2)函数,若对任意的,总存在使得,求实数的取值范围.21.(12分)已知:圆是的外接圆,边所在直线的方程为,中线所在直线的方程为,直线与圆相切于点.(1)求点和点的坐标;(2)求圆的方程.22.(10分)已知抛物线的顶点是坐标原点,焦点在轴上,且抛物线上的点到焦点的距离是5.(1)求该抛物线的标准方程和的值;(2)若过点的直线与该抛物线交于,两点,求证:为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先根据双曲线的渐近线方程得到,从而得到,,,再求离心率即可.【详解】双曲线,,,因为双曲线的一条渐近线方程为,即,所以,解得,所以,,,.故选:B2、B【解析】构造,通过求导,研究函数的单调性及极值,最值,画出函数图象,数形结合求出实数的取值范围.【详解】令,即,令,当时,,,令得:或,结合,所以,令得:,结合得:,所以在处取得极大值,也是最大值,,当时,,且,当时,,则恒成立,单调递增,且当时,,当时,,画出的图象,如下图:要想有3个零点,则故选:B3、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D4、D【解析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D5、D【解析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解【详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D6、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.7、C【解析】利用三点共线可得,由,利用基本不等式即可求解.【详解】由点是的中点,则,又因为点在线段上,则,所以,当且仅当,时取等号,故选:C【点睛】本题考查了基本不等式求最值、平面向量共线的推论,考查了基本运算求解能力,属于基础题.8、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.9、D【解析】设,则,.所以当时,的最小值为.故选D.10、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.11、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.12、B【解析】根据等比数列的前n项和公式即可求解.【详解】由题可知是首项为2,公比为3的等比数列,则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.14、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.15、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:16、【解析】求导易得函数有两个极值点和,根据题意,由求解.【详解】由,可得函数有两个极值点和,,,若函数有三个零点,必有解得或故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】(1)由已知证得,,,以为坐标原点,建立如图所示的空间直角坐标系,根据向量垂直的坐标表示和线面垂直的判定定理可得证;(2)根据二面角的空间向量求解方法可得答案;(3)设,表示点Q,再利用线面角的空间向量求解方法,建立方程解得,可得答案.【详解】(1)因为平面,平面,平面,所以,,又因为,则以为坐标原点,建立如图所示的空间直角坐标系,由已知可得,,,,,,所以,,,因为,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作为平面的法向量,设平面的法向量因为,.所以,即,不妨设,得.,又由图示知二面角为锐角,所以二面角的正弦值为.(3)设,即,,所以,即,因为直线与平面所成角的正弦值为,所以,即,解得,即.【点睛】本题考查利用空间向量求线面垂直、线面角、二面角的求法,向量法求二面角的步骤:建、设、求、算、取:1、建:建立空间直角坐标系,以三条互相垂直的垂线的交点为原点;2、设:设所需点的坐标,并得出所需向量的坐标;3、求:求出两个面的法向量;4、算:运用向量的数量积运算,求两个法向量的夹角的余弦值;5、取:根据二面角的范围和图示得出的二面角是锐角还是钝角,再取值.18、(1)5(2)8km/h(3)答案见解析【解析】(1)列出关系式,根据当v=12km/h,每小时的燃料费为720元即可求解;(2)列出燃料费的函数解析式,利用导数求其最值即可;(3)讨论x的范围,结合(2)的结论可得答案.【小问1详解】设每小时的燃料费为,则当v=12km/h,每小时的燃料费为720元,代入得.【小问2详解】由(1)得.设全程燃料费为y,则(),所以,令,解得v=0(舍去)或v=16,所以当时,;当时,,所以当v=16时,y取得最小值,故为了使全程燃料费最省,船的实际前进速度应为8km/h【小问3详解】由(2)得,若时,则y在区间上单调递减,当v=x时,y取得最小值;若时,则y区间(8,16)上单调递减,在区间上单调递增,当v=16时,y取得最小值;综上,当时,船的实际前进速度为8km/h,全程燃料费最省;当时,船的实际前进速度应为(x-8)km/h,全程燃料费最省19、(1)(2)8【解析】(1)由抛物线C上的点到准线的最小距离为1,所以,即可求得抛物线的方程;(2)设直线AB的斜率为k,则直线CD的斜率为,得到直线AB的方程为,联立方程,求得,进而求得的坐标,得到的表达式,结合基本不等式,即可求解.【小问1详解】解:因为抛物线C上的点到准线的最小距离为1,所以,解得,所以抛物线C的方程为【小问2详解】解:由(1)可知焦点为F(1,0),由已知可得ABCD,所以直线AB,CD的斜率都存在且均不为0,设直线AB斜率为k,则直线CD的斜率为,所以直线AB的方程为,联立方程,消去x得,设点A(x1,y1),B(x2,y2),则,因为M(xM,yM)为弦AB的中点,所以,由,得,所以点,同理可得,所以,=,所以,当且仅当,即时,等号成立,所以的最小值为20、(1)答案见解析;(2).【解析】(1)求导,根据导函数的正负性分类讨论进行求解即可;(2)根据存在性和任意性的定义,结合导数的性质、(1)的结论、构造函数法分类讨论进行求解即可.【小问1详解】,,①当时,恒成立,在上单调递增.②当时,恒成立,在上单调递减,③当吋,,在单调递减,单调递增.综上所述,当吋,在上单调递增;当时,在上单调递减,当时,在单调递减,单调递增.【小问2详解】由题意可知:在单调递减,单调递增由(1)可知:①当时,在单调递增,则恒成立②当时,在单调递减,则应(舍)③当时,,则应有令,则,且在单调递增,单调递减,又恒成立,则无解综上,.【点睛】关键点睛:运用构造函数法,结合存在性、任意性的定义进行求解是解题的关键.21、(1)A(1,7),(2)【解析】(1)与的的交点为点D,与的的交点为点A,联立解方程即可得出结果.(2)设圆P的圆心P为,由,,计算求解即可得出点坐标,由求得半径,进而可得出圆的方程.【小问1详解】由题可得:与的的交点为点D,故由,解得:,故与的的交点为点A,,解得:,故A(1,7)【小问2详解】设圆P的圆心P为,由与圆相切于点A,且的斜率为,则即,即,①又圆P为的外接圆,则BC为圆P的弦,又边BC所在直线的科率为,故根据垂径定理,有进而,即②,联立①②,解得:,即故,则圆P的方程为:.22、(1),(2)证明见解析【解析】(1)根据点到焦点的距离等于5,利用抛物线的定义求得p,进而得到抛物线方程,然后将点代入抛物线求解;(2)方法一:设直线方程为:,与抛物线方程联立,结合韦达定理,利用数量积的运算求解;方法二:根据直线过点,分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论