2024届山东省潍坊新高二数学第一学期期末经典试题含解析_第1页
2024届山东省潍坊新高二数学第一学期期末经典试题含解析_第2页
2024届山东省潍坊新高二数学第一学期期末经典试题含解析_第3页
2024届山东省潍坊新高二数学第一学期期末经典试题含解析_第4页
2024届山东省潍坊新高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省潍坊新高二数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数a,b,c,若a>b,则下列不等式成立的是()A B.C. D.2.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定3.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.4.在三棱锥中,,D为上的点,且,则()A. B.C. D.5.曲线在点处的切线过点,则实数()A. B.0C.1 D.26.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.7.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列8.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或49.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.10.抛物线的焦点坐标A. B.C. D.11.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.12.若函数在区间上单调递增,则实数的取值范围是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在处有极值,则的值为___________.14.已知抛物线C的方程为:,F为抛物线C的焦点,倾斜角为的直线过点F交抛物线C于A、B两点,则线段AB的长为________15.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________16.已知数列的前的前n项和为,数列的的前n项和为,则满足的最小n的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的等差数列中,,且,,构成等比数列的前三项(1)求数列,的通项公式;(2)求数列的前项和18.(12分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围19.(12分)已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.20.(12分)在平面直角坐标系xOy中,曲线1与坐标轴的交点都在圆C上(1)求圆C的方程;(2)设过点P(0,-2)的直线l与圆C交于A,B两点,且AB=2,求l的方程21.(12分)如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积22.(10分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据不等式的性质逐一分析即可得出答案.【详解】解:对于A,因为a>b,若,则,故A错误;对于B,若,则,故B错误;对于C,若a>b,又,所以,故C正确;对于D,当时,,故D错误.故选:C.2、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.3、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.4、B【解析】根据几何关系以及空间向量的线性运算即可解出【详解】因为,所以,即故选:B5、A【解析】由导数的几何意义得切线方程为,进而得.【详解】解:因为,,,所以,切线方程为,因为切线过点,所以,解得故选:A6、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B7、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.8、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.9、A【解析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:10、B【解析】由抛物线方程知焦点在x轴正半轴,且p=4,所以焦点坐标为,所以选B11、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.12、D【解析】,∵函数在区间单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.∴取值范围是.故选D考点:利用导数研究函数的单调性.二、填空题:本题共4小题,每小题5分,共20分。13、2或6【解析】由解析式得到导函数,结合是函数极值点,即可求的值.【详解】由,得,因为函数在处有极值,所以,即,解得2或6.经检验,2或6满足题意.故答案为:2或6.14、8【解析】根据给定条件求出抛物线C的焦点坐标,准线方程,再求出点A,B的横坐标和即可计算作答.【详解】抛物线C:焦点,准线方程为,依题意,直线l的方程为:,由消去x并整理得:,设,则,于是得,所以线段AB的长为8.故答案为:815、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:16、9【解析】由数列的前项和为,则当时,,所以,所以数列的前和为,当时,,当时,,所以满足的最小的值为.点睛:本题主要考查了等差数列与等比数列的综合应用问题,其中解答中涉及到数列的通项与的关系,推导数列的通项公式,以及等差、等比数列的前项和公式的应用,熟记等差、等比数列的通项公式和前项和公式是解答的关键,着重考查了学生的推理与运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设等差数列公差为d,利用基本量代换列方程组求出的通项公式,进而求出的首项和公比,即可求出的通项公式;(2)利用分组求和法直接求和.【小问1详解】设等差数列的公差为d,则由已知得:,即,又,解得或(舍去),所以.,又,,,;【小问2详解】,.18、(1)的减区间为,增区间为(2)【解析】(1)利用导数求得的单调区间.(2)利用分离参数法,结合构造函数法以及导数求得的取值范围.【小问1详解】当时,,,所以在区间递减;在区间递增.所以的减区间为,增区间为.【小问2详解】,恒成立.构造函数,,,构造函数,,所以在上递增,,所以在上成立,所以,所以,即的取值范围是.19、(1);(2)(i),,;(ii).【解析】(1)推导出数列为等差数列,确定该数列的首项和公差,即可求得数列的通项公式;(2)(i)利用对数函数的单调性结合题中定义可求得、、的值;(ii)分别解不等式、、,结合题中定义可求得数列的前项的和.【小问1详解】解:因为,,则,可得,,可得,以此类推可知,对任意的,.由,变形为,是一个以为公差的等差数列,且首项为,所以,,因此,.【小问2详解】解:(i),则,,则,故,,则,故;(ii),当时,即当时,,当时,即当时,,当时,即当时,,因此,数列的前项的和为.20、(1)(2)或【解析】(1)求出曲线与坐标轴的交点坐标,设出圆的一般方程,代入求解;(2)分类讨论,斜率不存在时,直接验证,斜率存在时,设直线方程,求出圆心到直线的距离,由勾股定理求解【小问1详解】时,,又得,,所以三交点为,设圆方程为,则,解得,圆方程为;【小问2详解】由(1)知圆标准方程为,圆心为,半径为,直线斜率不存在时,直线为,它与圆的两交点为,满足题意;斜率存在时,设直线方程为,即,圆心到的距离为,又,所以,,直线方程为即所以直线方程是:或21、(1)证明见解析;(2).【解析】【小问1详解】因为△ABC和△PBC为正三角形,D为BC的中点,所以,又,所以平面【小问2详解】因为△ABC和△PBC为正三角形,且,所以,又,所以正三角形的面积为,所以.22、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论