2024届江苏省连云港市赣榆区海头高中高二数学第一学期期末质量检测试题含解析_第1页
2024届江苏省连云港市赣榆区海头高中高二数学第一学期期末质量检测试题含解析_第2页
2024届江苏省连云港市赣榆区海头高中高二数学第一学期期末质量检测试题含解析_第3页
2024届江苏省连云港市赣榆区海头高中高二数学第一学期期末质量检测试题含解析_第4页
2024届江苏省连云港市赣榆区海头高中高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省连云港市赣榆区海头高中高二数学第一学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班对期中成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,……,60进行编号,然后从随机数表第9行第5列的数1开始向右读,则选出的第6个个体是()(注:如下为随机数表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.522.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-33.从全体三位正整数中任取一数,则此数以2为底的对数也是正整数的概率为()A. B.C. D.以上全不对4.设,则A.2 B.3C.4 D.55.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A. B.C. D.6.已知函数为偶函数,则在处的切线方程为()A. B.C. D.7.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.28.已知在直角坐标系xOy中,点Q(4,0),O为坐标原点,直线l:上存在点P满足.则实数m的取值范围是()A. B.C. D.9.以,为焦点,且经过点的椭圆的标准方程为()A. B.C. D.10.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π11.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则_______________.14.已知数列的前项和为,且满足,,则___________.15.若直线与曲线没有公共点,则实数的取值范围是____________16.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1600个点,其中落入白色部分的有700个点,据此可估计黑色部分的面积为______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.18.(12分)要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?19.(12分)已知函数(1)讨论函数的单调性;(2)证明:对任意正整数n,20.(12分)已知函数.(Ⅰ)求的单调递减区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.21.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角的余弦值.22.(10分)某企业搜集了某产品的投人成本x(单位:万元)与销售收入y(单位:万元)的六组数据,并将其绘制成如图所示的散点图.根据散点图可以看出,y与x之间是线性相关的.(1)试用最小二乘法求出y关于x的线性回归方程;(2)若投入成本不高于10万元,则可以根据(1)中的回归方程估计产品销售收入;若投入成本高于10万元,投入成本x(单位:万元)与销售收入y(单位:万元)之间的关系式为.若该企业要追求更高的毛利率(毛利率),试问该企业对该产品的投入成本选择收人7万元更好,还是选择12万元更好?说明你的理由.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为.参考数据:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】从指定位置起依次读两位数码,超出编号的数删除.【详解】根据题意,从随机数表第9行第5列的数1开始向右读,依次选出的号码数是:12,34,29,56,07,52;所以第6个个体是52.故选:D.2、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A3、B【解析】利用古典概型的概率求法求解.【详解】从全体三位正整数中任取一数共有900种取法,以2为底的对数也是正整数的三位数有,共3个,所以以此数以2为底的对数也是正整数的概率为,故选:B4、B【解析】利用复数的除法运算求出,进而可得到.【详解】,则,故,选B.【点睛】本题考查了复数的四则运算,考查了复数的模,属于基础题5、B【解析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故选B【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题6、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.7、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.8、A【解析】根据给定直线设出点P的坐标,再借助列出关于的不等式,然后由不等式有解即可计算作答.【详解】因点P在直线l:上,则设,于是有,而,因此,,即,依题意,上述关于的一元二次不等式有实数解,从而有,解得,所以实数m的取值范围是.故选:A9、B【解析】根据焦点在x轴上,c=1,且过点,用排除法可得.也可待定系数法求解,或根据椭圆定义求2a可得.【详解】因为焦点在x轴上,所以C不正确;又因为c=1,故排除D;将代入得,故A错误,所以选B.故选:B10、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C11、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B12、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用来求得,进而求得正确答案.【详解】,,是数列是首项为,公差为的等差数列,所以,所以.故答案为:14、【解析】当时,,可得,可得数列隔项成等比数列,即所以数列的奇数项和偶数项分别是等比数列,分别求和,即可得解.【详解】因为,,所以,当时,,∴,所以数列的奇数项和偶数项分别是等比数列,所以.故答案为:.15、;【解析】可化简曲线的方程为,作出其图形,数形结合求临界值即可求解.【详解】由可得,所以曲线为以为圆心,的下半圆,作出图形如图:当直线过点时,,可得,当直线与半圆相切时,则圆心到直线的距离,可得:或(舍),若直线与曲线没有公共点,由图知:或,所以实数的取值范围是:,故答案为:16、9【解析】先根据点数求解概率,再结合几何概型求解黑色部分的面积【详解】由题设可估计落入黑色部分概率设黑色部分的面积为,由几何概型计算公式可得解得故答案为:9三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据条件先证明,再根据线面平行的判定定理证明平面PAD;(2)确定坐标原点,建立空间直角坐标系,从而求出相关的点的坐标,进而求得相关向量的坐标,再求相关平面的法向量,根据向量的夹角公式求得结果.【小问1详解】证明:由已知为等边三角形,且,所以又因为,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小问2详解】解:取的中点,连接,则,由(1)知,所以,分别以,,为,,轴建立空间直角坐标系.则,,,所以,由已知可知平面ABCD的一个法向量设平面的一个法向量为,由,即,得,令,则,所以,由图形可得二面角为锐角,所以二面角的余弦值为.18、当圆柱底面半径为,高为时,总成本最底.【解析】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,进而根据体积得到,然后求出表面积,进而运用导数的方法求得表面积的最小值,此时成本最小.【详解】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,每平方厘米金属包装造价为元,由题意得:,则,表面积造价,,令,得,令,得,的单调递减区间为,递增区间为,当圆柱底面半径为,高为时,总成本最底.19、(1)见解析(2)见解析【解析】(1)由,令,得,或,又的定义域为,讨论两个根及的大小关系,即可判定函数的单调性;(2)当时,在,上递减,则,即,由此能够证明【小问1详解】的定义域为,,令,得,或,①当,即时,若,则,递增;若,则,递减;②当,即时,若,则,递减;若,则,递增;若,则,递减;综上所述,当-2<a<0时,f(x)在,单调递减,在单调递增;当a≥0时,f(x)在单调递增,在单调递减.【小问2详解】由(2)知当时,在,上递减,,即,,,,2,3,,,,【点睛】本题考查利用导数研究函数的单调性,本题的关键是令a=1,用已知函数的单调性构造,再令x=恰当地利用对数求和进行解题20、(Ⅰ)单调递减区间为;(Ⅱ).【解析】(Ⅰ)求函数的导函数,求的区间即为所求减区间;(Ⅱ)化简不等式,变形为,即求,令,求的导函数判断的单调性求出最小值,可求出的范围.【详解】(Ⅰ)由题可知.令,得,从而,∴的单调递减区间为.(Ⅱ)由可得,即当时,恒成立.设,则.令,则当时,.∴当时,单调递增,,则当时,,单调递减;当时,,单调递增.∴,∴.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为或,转化为求函数的最值求出的范围.21、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面,所以DC,DB,DE两两垂直以D为原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论