2024届鹤壁市重点中学高二数学第一学期期末达标检测试题含解析_第1页
2024届鹤壁市重点中学高二数学第一学期期末达标检测试题含解析_第2页
2024届鹤壁市重点中学高二数学第一学期期末达标检测试题含解析_第3页
2024届鹤壁市重点中学高二数学第一学期期末达标检测试题含解析_第4页
2024届鹤壁市重点中学高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届鹤壁市重点中学高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.2.变量与的数据如表所示,其中缺少了一个数值,已知关于的线性回归方程为,则缺少的数值为()22232425262324▲2628A.24 B.25C.25.5 D.263.等比数列满足,,则()A.11 B.C.9 D.4.“”是“方程表示焦点在x轴上的椭圆”的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件5.在区间上随机取一个数,则事件“曲线表示圆”的概率为()A. B.C. D.6.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.7.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(图1),标识由党徽、数字“100”“1921”“2021”和56根光芒线组成,生动展现中国共产党团结带领中国人民不忘初心、牢记使命、艰苦奋斗的百年光辉历程.其中“100”的两个“0”设计为两个半径为的相交大圆,分别内含一个半径为1的同心小圆,且同心小圆均与另一个大圆外切(图2).已知,在两大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.8.青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为()A. B.C. D.9.函数在的图象大致为()A. B.C D.10.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知三棱柱的所有棱长均为2,平面,则异面直线,所成角的余弦值为()A. B.C. D.12.已知,则下列三个数,,()A.都不大于-4 B.至少有一个不大于-4C.都不小于-4 D.至少有一个不小于-4二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点坐标为________14.椭圆方程为椭圆内有一点,以这一点为中点的弦所在的直线方程为,则椭圆的离心率为______15.已知数列{}的通项公式为,前n项和为,当取得最小值时,n的值为___________.16.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,是函数的两个极值点.(1)求的解析式;(2)记,,若函数有三个零点,求的取值范围.18.(12分)已知椭圆左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程19.(12分)已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.20.(12分)已知函数,其中为常数,且(1)求证:时,;(2)已知a,b,p,q为正实数,满足,比较与的大小关系.21.(12分)过点作圆的两条切线,切点分别为A,B;(1)求直线AB的方程;(2)若M为圆上的一点,求面积的最大值22.(10分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直线BC与平面PCD所成角的正弦值为.(1)求证:平面PCD⊥平面PAC;(2)求平面PAB与平面PCD所成锐二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.2、A【解析】可设出缺少的数值,利用表中的数据,分别表示出、,将样本中心点带入回归方程,即可求得参数.【详解】设缺少的数值为,则,,因为回归直线方程经过样本点的中心,所以,解得.故选:A3、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B4、A【解析】由椭圆的标准方程结合充分必要条件的定义即得.【详解】若,则方程表示焦点在轴上的椭圆;反之,若方程表示焦点在轴上的椭圆,则;所以“”是“方程表示焦点在x轴上的椭圆”的充要条件.故选:A.5、D【解析】先求出曲线表示圆参数的范围,再由几何概率可得答案.【详解】由可得曲线表示圆,则解得或又所以曲线表示圆的概率为故选:D6、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D7、B【解析】求出两圆相交公共部分两个弓形面积,结合两圆面积可得概率【详解】如图,是两圆心,是两圆交点坐标,四边形边长均为,又,所以,所以,四边形是正方形,,弓形面积为,两个弓形面积为,两圆涉及部分面积为所以所求概率为故选:B8、C【解析】由题意作出轴截面,最短直径为2a,根据已知条件点(2a,2a)在双曲线上,代入双曲线的标准方程,结合a,b,c的关系可求得离心率e的值【详解】由题意作出轴截面如图:M点是双曲线与截面正方形的交点之一,设双曲线的方程为:最短瓶口直径为A1A2=2a,则由已知可得M是双曲线上的点,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化简后得,解得故选:C9、D【解析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.10、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.11、A【解析】建立空间直角坐标系,利用向量法求解【详解】以为坐标原点,平面内过点且垂直于的直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示,则,,,,∴,,∴,∴异面直线,所成角的余弦值为.故选:A12、B【解析】利用反证法设,,都大于,结合基本不等式即可得出结论.【详解】设,,都大于,则,由于,故,利用基本不等式可得,当且仅当时等号成立,这与假设所得结论矛盾,故假设不成立,故下列三个数,,至少有一个不大于,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用焦点坐标为求解即可【详解】因为,所以,所以焦点的坐标为,故答案:14、【解析】设,利用“点差法”得到,即可求出离心率.【详解】设直线与椭圆交于,则.因为AB中点,则.又,相减得:.所以所以所以,所以,即离心率.故答案为:.15、7【解析】首先求出数列的正负项,再判断取得最小值时n的值.【详解】当,,解得:,当和时,,所以取得最小值时,.故答案为:716、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据极值点的定义,可知方程的两个解即为,,代入即得结果;(2)根据题意,将方程转化为,则函数与直线在区间,上有三个交点,进而求解的取值范围【详解】解:(1)因为,所以根据极值点定义,方程的两个根即为,,,代入,,可得,解之可得,,故有;(2)根据题意,,,,根据题意,可得方程在区间,内有三个实数根,即函数与直线在区间,内有三个交点,又因为,则令,解得;令,解得或,所以函数在,上单调递减,在上单调递增;又因为,,,,函数图象如下所示:若使函数与直线有三个交点,则需使,即18、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为19、(1);(2)存在,定圆.【解析】(1)由题可得,,即求;(2)由题可设直线的方程,利用韦达定理及条件可得直线恒过定点,则以为直径的圆适合题意,即得.【小问1详解】由题设知,椭圆上顶点为,且在直线上∴,即又点在椭圆上,∴解得,∴椭圆C的方程为;【小问2详解】设,,当直线斜率存在,设直线为:联立方程,化简得∴,,∵,∴又∵,∴将,代入,化简得,即则或,①当时,直线恒过定点与点重合,不符题意.②当时,直线恒过定点,记为点,∵,∴以为直径,其中点为圆心的圆恒经过两点,则圆方程为:;当直线斜率不存在,设方程为,,,且,,∴,解得或(舍去),,取,以为直径作圆,圆方程为:恒经过两点,综上所述,存在定圆恒经过两点.【点睛】关键点点睛:本题第二问的关键是证明直线恒过定点,结合条件可得以为直径的圆,适合题意即得.20、(1)证明见解析(2)【解析】(1)根据导数判断出函数的单调性求出其最大值,即可证出;(2)由(1)知:,再变形即可得出小问1详解】因为,∴在上单调递减,又因,故当时,;当时,,所以在上单调递增,在上单调递减,所以.【小问2详解】由(1)知:,两边同乘以a得:,∴,即.21、(1)(2)【解析】(1)求出以为直径的圆的方程,结合已知圆的方程,将两圆方程相减可求得两圆公共弦所在直线方程;(2)求出圆上的点M到直线AB的距离的最大值,求出,利用三角形面积公式求得答案.【小问1详解】圆的圆心坐标为,半径为1,则的中点坐标为,,以为圆心,为直径的圆的方程为,由,得①,由,得②,①②得:直线的方程为;【小问2详解】圆心到直线的距离为故圆上的点M到直线的距离的最大值为,而,故面积的最大值为.22、(1)证明见解析(2)【解析】(1)取的中点,连接,证明,由线面垂直的判定定理可证明平面,再利用面面垂直的判定定理可证得结论,(2)过点作于,以为原点,建立空间直角坐标系,如图所示,设,先根据直线BC与平面PCD所成角的正弦值为,求出,然后再求出平面PAB的法向量,利用向量的夹角公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论