2024届贵阳市第二实验中学高二数学第一学期期末达标检测模拟试题含解析_第1页
2024届贵阳市第二实验中学高二数学第一学期期末达标检测模拟试题含解析_第2页
2024届贵阳市第二实验中学高二数学第一学期期末达标检测模拟试题含解析_第3页
2024届贵阳市第二实验中学高二数学第一学期期末达标检测模拟试题含解析_第4页
2024届贵阳市第二实验中学高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵阳市第二实验中学高二数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设命题甲:,命题乙:直线与直线平行,则()A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件C.甲是乙的充要条件 D.甲是乙的既不充分也不必要条件2.在中国共产党建党100周年之际,广安市某中学组织了“党史知识竞赛”活动,已知该校共有高中学生1000人,用分层抽样的方法从该校高中学生中抽取一个容量为25的样本参加活动,其中高二年级抽取了8人,则该校高二年级学生人数为()A.960 B.720C.640 D.3203.函数的导函数为()A. B.C. D.4.阅读如图所示程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.325.椭圆C:的焦点为,,点P在椭圆上,若,则的面积为()A.48 B.40C.28 D.246.函数的单调递减区间是()A. B.C. D.7.椭圆的一个焦点坐标为,则()A.2 B.3C.4 D.88.已知抛物线C:的焦点为F,过点P(-1,0)且斜率为的直线l与抛物线C相交于A,B两点,则()A. B.14C. D.159.校庆当天,学校需要在靠墙的位置用围栏围起一个面积为200平方米的矩形场地.用来展示校友的书画作品.靠墙一侧不需要围栏,则围栏总长最小需要()米A.20 B.40C. D.10.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等11.已知椭圆的离心率,为椭圆上的一个动点,若定点,则的最大值为A. B.C. D.12.若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知底面为正方形且各侧棱均相等的四棱锥可绕着任意旋转,平面,分别是的中点,,,点在平面上的射影为点,则当最大时,二面角的大小是________14.已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________15.函数满足,且,则的最小值为___________.16.已知函数的导函数为,且对任意,,若,,则的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某城镇为推进生态城镇建设,对城镇的生态环境、市容市貌等方面进行了全面治理,为了解城镇居民对治理情况的评价和建议,现随机抽取了200名居民进行问卷并评分(满分100分),将评分结果制成如下频率分布直方图,已知图中a,b,c成等比数列,且公比为2(1)求图中a,b,c的值,并估计评分的均值(各段分数用该段中点值作代表);(2)根据统计数据,在评分为“50~60”和“80~90”的居民中用分层抽样的方法抽取了6个居民.若从这6个居民中随机选择2个参加座谈,求所抽取的2个居民中至少有1个评分在“80~90”的概率18.(12分)如图,四棱锥P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分别是AC、PB的中点(1)证明:EF∥平面PCD;(2)求证:平面PBD⊥平面PAC19.(12分)给出以下三个条件:①;②,,成等比数列;③.请从这三个条件中任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分已知公差不为0的等差数列的前n项和为,,______(1)求数列的通项公式;(2)若,令,求数列的前n项和20.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.21.(12分)如图,AB是半圆O的直径,C是半圆上一点,M是PB的中点,平面ABC,且,,.(1)求证:平面PAC;(2)求三棱锥M—ABC体积.22.(10分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据充分条件和必要条件的定义,结合两直线平行的性质进行求解即可.【详解】当时,直线的方程为,直线方程为,此时,直线与直线平行,即甲乙;直线和直线平行,则,解得或,即乙甲;则甲是乙的充分不必要条件.故选:.2、D【解析】由分层抽样各层成比例计算即可【详解】设高二年级学生人数为,则,解得故选:D3、B【解析】利用复合函数求导法则即可求导.【详解】,故选:B.4、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C5、D【解析】根据给定条件结合椭圆定义求出,再判断形状计算作答.【详解】椭圆C:的半焦距,长半轴长,由椭圆定义得,而,且,则有是直角三角形,,所以的面积为24.故选:D6、D【解析】求导后,利用求得函数的单调递减区间.【详解】解:,则,由得,故选:D.7、D【解析】由条件可得,,,,由关系可求值.【详解】∵椭圆方程为:,∴,∴,,∵椭圆的一个焦点坐标为,∴,又,∴,∴,故选:D.8、C【解析】设A、B两点的坐标分别为,,根据抛物线的定义求出,然后将直线的方程代入抛物线方程并化简,进而结合根与系数的关系求得答案.【详解】设A、B两点坐标分别为,,直线的方程为,抛物线的准线方程为:,由抛物线定义可知:.联立方程,消去y后整理为,可得,,.故选:C.9、B【解析】在出矩形中,设,得到,结合基本不等式,即可求解【详解】如图所示,在矩形中,设,则,根据题意,可得矩形围栏总长为因为,可得,当且仅当时,即时,等号成立,即围栏总长最小需要米.故选:B.10、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C11、C【解析】首先求得椭圆方程,然后确定的最大值即可.【详解】由题意可得:,据此可得:,椭圆方程为,设椭圆上点的坐标为,则,故:,当时,.本题选择C选项.【点睛】本题主要考查椭圆方程问题,椭圆中的最值问题等知识,意在考查学生的转化能力和计算求解能力.12、D【解析】设,计算出、的值,利用平方差公式可求得结果.【详解】设由已知可得,,因此,.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】先计算得到二面角的大小为60°,设二面角C-AB-O的大小为,则,计算得到答案.【详解】解:由题可得,,因为分别是的中点,所以,,又,所以平面因为,所以,所以二面角为,设二面角的大小为,即,则,在中,利用余弦定理得到:,故当时,取得最大值.故答案为:14、①.4②.【解析】由等差中项与等比中项计算即可.【详解】若a,b,c三个数成等差数列.所以.若a,b,c三个数成等比数列.所以故答案为:4,.15、6【解析】化简得出,由化简后根据均值不等式建立不等式,求解二次不等式即可得解.【详解】,由得:,(当且仅当时取等号),所以的最小值为6.故答案为:616、【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性可得解.【详解】构造函数,则,故函数在上单调递减,由已知可得,由可得,可得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,均值为65.6(2)【解析】(1)根据a,b,c成等比数列且公比为2,得到a,b,c的关系,利用频率之和为1,求出a,b,c,估计评分的均值;(2)利用列举法得到基本事件,求出相应的概率.【小问1详解】由题意得,,,有,所以,即,解得,于是,评分在40~50,50~60,60~70,70~80,80~90,90~100的概率分别为0.15,0.20,0.30,0.20,0.10,0.05,则均分估计值为【小问2详解】评分在“50~60”和“80~90”分别有40人和20人则所抽取的6个居民中,评分在“80~90”一组有2人,记为A1,A2,评分在“50~60”一组4人,记为B1,B2,B3,B4从这6人中选取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15个其中至少有1个评分在“80~90”的基本事件有9个则所求的概率,即抽取的2个居民中至少有1个评分在“80~90”的概率为18、(1)证明见解析;(2)证明见解析.【解析】(1)连结,证明EF∥PD即可;(2)证明BD⊥平面PAC即可【小问1详解】连结,则是的中点,又是的中点,,又平面,面,平面【小问2详解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平面﹒19、(1)(2)【解析】(1)若选①,则根据等差数列的前n项和公式,结合,求得公差,可得答案;若选②,则根据,,成等比数列,列出方程,结合,求得公差,可得答案;若选③,则根据,列出方程,结合,求得公差,可得答案;(2)由(1)可得的表达式,利用错位相减法,求得答案.【小问1详解】设数列的公差为d选择①,由题意得,又,则,所以;选择②,由,,成等比数列,得,即,解得,或(舍去),所以;选择③,由,得,解得,所以【小问2详解】由题意知,∴①②①-②得∴,即.20、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.21、(1)证明见解析(2)2【解析】(1)依题意可得,再由平面,得到,即可证明平面;(2)连接,可证,即可得到平面,为三棱锥的高,再根据锥体的体积公式计算可得;【详解】(1)证明:因为是半圆的直径,所以.因为平面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论