




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省中山市实验中学数学高二上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车.在C,D不相邻的情况下,C和D至少有一辆与A和B车相邻的概率是()A. B.C. D.2.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为60度的直角梯形,则该椭圆的离心率为()A. B.C. D.3.已知,为椭圆的左、右焦点,P为椭圆上一点,若,则P点的横坐标为()A. B.C.4 D.94.已知命题p:,总有,则为()A.,使得 B.,使得C.,总有 D.,总有5.已知数列的通项公式是,则()A10100 B.-10100C.5052 D.-50526.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.7.已知正三棱柱中,,点为中点,则异面直线与所成角的余弦值为()A. B.C. D.8.已知,是双曲线的左,右焦点,经过点且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且A在第三象限,四边形为平行四边形,为直线的倾斜角,若,则该双曲线离心率的取值范围是()A. B.C. D.9.已知、,则直线的倾斜角为()A. B.C. D.10.已知向量a→=(1,1,k),A. B.C. D.11.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的中心为原点,焦点,均在y轴上,椭圆C的面积为,且短轴长为,则椭圆C的标准方程为()A. B.C. D.12.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有个点,相应的图案中点的个数记为,按此规律,则___________,___________.14.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________15.函数,其导函数为函数,则__________16.已知数列满足,将数列按如下方式排列成新数列:,,,,,,,,,…,,….则新数列的前70项和为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间(1)求实数的值及参加“掷铅球”项目测试的人数;(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率18.(12分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=时,求直线l的方程.19.(12分)函数(1)求在上的单调区间;(2)当时,不等式恒成立,求实数a的取值范围20.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.21.(12分)某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,,…,后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求出这60名学生中化学成绩低于50分的人数;(2)估计高二年级这次考试化学学科及格率(60分以上为及格);(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率22.(10分)已知是奇函数.(1)求的值;(2)若,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求出基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,由此能求出和至少有一辆与和车相邻的概率【详解】解:某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着车和车,同时进来,两车,在,不相邻的条件下,基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,和至少有一辆与和车相邻的概率:故选:B2、A【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故选:A【点睛】本题主要考查了椭圆的定义和椭圆离心力的求解,属于基础题.3、B【解析】设,,根据向量的数量积得到,与椭圆方程联立,即可得到答案;【详解】设,,,与椭圆联立,解得:,故选:B4、B【解析】由含有一个量词的命题的否定的定义求解.【详解】因为命题p:,总有是全称量词命题,所以其否定为存在量词命题,即,使得,故选:B5、D【解析】根据已知条件,用并项求和法即可求得结果.【详解】∵∴∴.故选:D.6、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A7、A【解析】根据异面直线所成角的定义,取中点为,则为异面直线和所成角或其补角,再解三角形即可求出【详解】如图所示:设中点为,则在三角形中,为中点,为中位线,所以有,,所以为异面直线和所成角或其补角,在三角形中,,所以由余弦定理有,故选:A.8、B【解析】根据双曲线的几何性质和平行四边形的性质可知也在双曲线的渐近线上,且在第一象限,从而由可知轴,所以在直角三角形中,,由,可得的范围,进而转化为,的不等式,结合可得离心率的取值范围【详解】解:因为经过点且与轴垂直的直线与双曲线的一条渐近线相交于点,且在第三象限,四边形为平行四边形,所以由双曲线的对称性可知也在双曲线的渐近线上,且在第一象限,由轴,可知轴,所以,在直角三角形中,,因为,所以,,即,所以,即,即,故,所以.故选:B9、B【解析】设直线的倾斜角为,利用直线的斜率公式求出直线的斜率,进而可得出直线的倾斜角.【详解】设直线的倾斜角为,由斜率公式可得,,因此,.故选:B.10、D【解析】根据向量的坐标运算和向量垂直数量积为0可解.【详解】解:根据题意,易得a→∵与两向量互相垂直,∴0+2+k+2=0,解得.故选:D11、C【解析】设出椭圆的标准方程,根据已知条件,求得,即可求得结果.【详解】因为椭圆的焦点在轴上,故可设其方程为,根据题意可得,,故可得,故所求椭圆方程为:.故选:C.12、D【解析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】利用题中所给规律求出即可.【详解】解:由图可知,,,,,因为符合等差数列的定义且公差为所以,所以,故答案为:,.14、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.15、【解析】根据解析式,可求得解析式,代入数据,即可得答案.详解】∵,∴,∴.故答案为:.16、##2.9375【解析】先根据题干条件得到,再利用错位相减法求前64项和,最后求出前70项和.【详解】①,当时,;当时,②,①-②得:,即又满足,所以由,得令,则,两式相减得,则所以新数列的前70项和为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.05,40;(2)【解析】(1)因为由频率分布直方图可得共五组的频率和为1所以可得一个关于的等式,即可求出的值.再根据已知有4名学生的成绩在9米到11米之间,可以求出本次参加“掷铅球”项目测试的人数.本小题要根据所给的图表及直方图作答,频率的计算易漏乘以组距.(2)因为若此次测试成绩最好的共有4名同学.成绩最差的共有2名同学.所以从6名同学中抽取2名同学共有15中情况,其中两人在同组情况由8中.所以可以计算出所求的概率.试题解析:(Ⅰ)由题意可知解得所以此次测试总人数为答:此次参加“掷铅球”的项目测试的人数为40人(Ⅱ)设从此次测试成绩最好和最差的两组中随机抽取2名学生自不同组的事件为A:由已知,测试成绩在有2人,记为;在有4人,记为.从这6人中随机抽取2人有,共15种情况事件A包括共8种情况.所以答:随机抽取的2名学生自不同组的概率为考点:1.频率分布直方图.2.概率问题.3.列举分类的思想.18、(1);(2)或.【解析】(1)由题设可得圆心为,半径,根据直线与圆的相切关系,结合点线距离公式列方程求参数a的值即可.(2)根据圆中弦长、半径与弦心距的几何关系列方程求参数a,即可得直线方程.【小问1详解】由圆:,可得,其圆心为,半径,若直线与圆相切,则圆心到直线距离,即,可得:.【小问2详解】由(1)知:圆心到直线的距离,因为,即,解得:,所以,整理得:,解得:或,则直线为或.19、(1)单调递增区间为;单调递减区间为和(2)【解析】(1)求出,然后可得答案;(2)由条件可得,设,则,然后利用导数可得在上单调递增,,然后分、两种情况讨论求解即可.【小问1详解】由题可得令,得;令,得,所以f(x)的单调递增区间为;单调递减区间为和【小问2详解】由,得,即设,则设,则当时,,,所以所以即在上单调递增,则若,则,所以h(x)在上单调递增所以h(x)≥h(0)=0恒成立,符合题意若a>2,则,必存在正实数,满足:当时,,h(x)单调递减,此时h(x)<h(0)=0,不符合题意综上所述,a的取值范围是20、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.21、(1)6人;(2)75%;(3).【解析】(1)由频率分布直方图可得化学成绩低于50分的频率为0.1,然后可求得人数为人;(2)根据频率分布直方图求分数在第三、四、五、六组的频率之和即可;(3)结合图形可得“成绩低于50分”的人数是6人,成绩在这组的人数是,由古典概型概率公式可得所求概率为试题解析:(1)因为各组的频率和等于1,由频率分布直方图可得低于50分的频率为:,所以低于分的人数为(人)(2)依题意可得成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),其频率之和为,故抽样学生成绩的及格率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度汽车行业售后服务培训计划
- 2025广告公司客户满意度提升计划
- 2025-2030中国柠檬饮料行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030中国机场护柱行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国智慧养老行业竞争格局分析及投资前景与战略规划研究报告
- 数字孪生在农业中的应用与推广-洞察阐释
- 结合图神经网络的知识图谱解释性研究-洞察阐释
- 高尔夫教练师徒结对训练计划
- 重庆中烟考试真题2024
- 线程同步在分布式系统中的应用与性能分析-洞察阐释
- DBJ41-T311-2025 《人民防空节镍型不锈钢防护设备选用与安装技术标准》
- 2025-2030年中国军用机器人行业市场现状供需分析及投资评估规划分析研究报告
- 2024年佛山市三水乐投控股有限公司招聘考试真题
- 新闻阅读-2024年中考语文记叙文阅读专项复习(原卷版)
- 2025-2030年电石项目投资价值分析报告
- 2025江苏中天钢铁集团有限公司产品采购销售合同
- 《演讲与表达技巧》课件
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 试卷密封线模板
- 广告牌钢结构设计计算书(共39页).doc
- 外贸委托付款协议书模板(中英文版)
评论
0/150
提交评论