




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年上海市闵行区七宝中学高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线为()A.抛物线与一条直线 B.上半抛物线(除去顶点)与一条直线C.抛物线与一条射线 D.上半抛物线(除去顶点)与一条射线2.等差数列中,若,,则等于()A. B.C. D.3.若等比数列满足,,则数列的公比为()A. B.C. D.4.已知数列的前项和为,满足,,,则()A. B.C.,,成等差数列 D.,,成等比数列5.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.6.已知直线交圆于A,B两点,若点满足,则直线l被圆C截得线段的长是()A.3 B.2C. D.47.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.18.已知向量,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.10.已知函数的部分图象与轴交于点,与轴的一个交点为,如图所示,则下列说法错误的是()A. B.的最小正周期为6C.图象关于直线对称 D.在上单调递减11.已知四棱锥,平面PAB,平面PAB,底面ABCD是梯形,,,,满足上述条件的四棱锥的顶点P的轨迹是()A.椭圆 B.椭圆的一部分C.圆 D.不完整的圆12.已知集合,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若存在唯一零点,则的取值范围是__________.14.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.15.在等比数列中,,,若数列满足,则数列的前项和为________16.已知、是空间内两个单位向量,且,如果空间向量满足,且,,则对于任意的实数、,的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:焦点F的横坐标等于椭圆的离心率.(1)求抛物线C的方程;(2)过(1,0)作直线l交抛物线C于A,B两点,判断原点与以线段AB为直径的圆的位置关系,并说明理由.18.(12分)已知数列满足,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求的最小值及此时的值.19.(12分)已知中,内角的对边分别为,且满足.(1)求的值;(2)若,求面积的最大值.20.(12分)2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?非围棋迷围棋迷合计男女1055合计(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知圆,其圆心在直线上.(1)求的值;(2)若过点的直线与相切,求的方程.22.(10分)在中,已知,,,,分别为边,的中点,于点.(1)求直线方程;(2)求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】化简得出或,由此可得出方程表示的曲线.【详解】由可得或,所以,方程表示的曲线为上半抛物线(除去顶点)与一条直线,故选:B.2、C【解析】由等差数列下标和性质可得.【详解】因为,,所以.故选:C3、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D4、C【解析】写出数列前几项,观察规律,找到数列变化的周期,再依次去判断各项的说法即可解决.【详解】数列中,,,,则此数列为1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即数列的各项是周期为6数值循环重复的一列数,选项A:,,则.判断错误;选项B:由,可知当时,.判断错误;选项C:,则,即,,成等差数列.判断正确;选项D:,,则,,即,,不能构成等比数列.判断错误.故选:C5、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.6、B【解析】由题设知为圆的圆心且A、B在圆上,根据已知及向量数量积的定义求的大小,进而判断△的形状,即可得直线l被圆C截得线段的长.【详解】∵点为圆的圆心且A、B在圆上,又,∴,∴,又,∴,故△为等边三角形,∴直线l被圆C截得线段的长是2故选:B7、C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.8、A【解析】根据得出,根据充分必要条件的定义可判断.【详解】解:∵,向量,,∴,即,根据充分必要条件的定义可判断:“”是“”的充分不必要条件,故选:A.9、A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A10、D【解析】根据函数的图象求出,再利用函数的性质结合周期公式逆推即可求解.【详解】因为函数的图象与轴交于点,所以,又,所以,A正确;因为的图象与轴的一个交点为,即,所以,又,解得,所以,所以,求得最小正周期为,B正确;,所以是的一条对称轴,C正确;令,解得,所以函数在,上单调递减,D错误故选:D.11、D【解析】根据题意,分析得动点满足的条件,结合圆以及椭圆的方程,以及点的限制条件,即可判断轨迹.【详解】因为平面PAB,平面PAB,则//,又面面,故可得;因为,故可得,则,综上所述:动点在垂直的平面中,且满足;为方便研究,不妨建立平面直角坐标系进行说明,在平面中,因为,以中点为坐标原点,以为轴,过且垂直于的直线为轴建立平面直角坐标系,如下所示:因为,故可得,整理得:,故动点的轨迹是一个圆;又当三点共线时,几何体不是空间几何体,故动点的轨迹是一个不完整的圆.故选:.【点睛】本题考察立体几何中动点的轨迹问题,处理的关键是利用立体几何知识,找到动点满足的条件,进而求解轨迹.12、B【解析】先求得集合A,再根据集合的交集运算可得选项.【详解】解:因为,所以故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得函数的导数,得到是的唯一零点,转化为方程无实数根或只存在实数根,进而转化为和的图象至多有一个交点(且如果有交点,交点必须在处),利用导数求得函数的单调性和最小值,即可求解.【详解】由题意,函数,可得,因为存在唯一零点,所以是的唯一零点,则关于的方程无实数根或只存在实数根,所以函数和的图象至多有一个交点(且如果有交点,交点必须在处),又由,当时,,单调递减;当时,,单调递增,所以,所以,即即的取值范围是.故答案为:.14、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.15、【解析】求出等比数列的通项公式,可得出的通项公式,推导出数列为等差数列,利用等差数列的求和公式即可得解.【详解】设等比数列的公比为,则,则,所以,,则,所以,数列为等差数列,故数列的前项和为.故答案为:.16、【解析】根据已知可设,,,根据已知条件求出、、的值,将向量用坐标加以表示,利用空间向量的模长公式可求得的最小值.【详解】因为、是空间内两个单位向量,且,所以,,因为,则,不妨设,,设,则,,解得,则,因为,可得,则,所以,,当且仅当时,即当时,等号成立,因此,对于任意的实数、,的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)原点在以线段AB为直径的圆上,详见解析.【解析】(1)利用椭圆方程可得其离心率,进而可求抛物线的焦点,即求;(2)设直线l的方程为,联立抛物线方程,利用韦达定理法可得,即得.【小问1详解】由椭圆,可得,故,∴抛物线C的方程为.【小问2详解】由题可设直线l的方程为,由,得,设,则,又,故,∴,∴,即,故原点在以线段AB为直径的圆上.18、(1)(2);或【解析】(1)由题意得到数列为公差为的等差数列,结合,,成等比数列,列出方程求得,即可得到数列的通项公式;(2)由,得到时,,当时,,当时,,结合等差数列的求和公式,即可求解.【小问1详解】解:由题意,数列满足,所以数列为公差为的等差数列,又由,,成等比数列,可得,即,解得,所以数列的通项公式.【小问2详解】解:由数列的通项公式,令,即,解得,所以当时,;当时,;当时,,所以当或时,取得最小值,最小值为.19、(1)2;(2).【解析】(1)利用正弦定理以及逆用两角和的正弦公式得出,而,即可求出的值;(2)根据题意,由余弦定理得,再根据基本不等式求得,当且仅当时取得等号,即可求出面积的最大值.【小问1详解】解:由题意得,由正弦定理得:,即,即,因为,所以【小问2详解】解:由余弦定理,即,由基本不等式得:,即,当且仅当时取得等号,,所以面积的最大值为20、(1)没有95%把握认为“围棋迷”与性别有关.(2).【解析】(1)由频率分布直方图求得频率与频数,填写列联表,计算观测值,对照临界值得出结论;(2)根据分层抽样原理,用列举法求出基本事件数,计算所求的概率值【详解】(1)由频率分布直方图可知,所以在抽取的100人中,“围棋迷”有25人,从而列联表如下非围棋迷围棋迷合计男301545女451055合计7525100因为,所以没有95%的把握认为“围棋迷”与性别有关.(2)由(1)中列联表可知25名“围棋迷”中有男生15名,女生10名,所以从“围棋迷”中按性别分层抽样抽取的5名学生中,有男生3名,记为,有女生2名,记为.则从5名学生中随机抽取2人出赛,基本事件有:,,,,,,,,,,共10种;其中2人恰好一男一女的有:,,,,,,共6种;故2人恰好一男一女的概率为.【点睛】本题考查了频率分布直方图、独立性检验和列举法求概率的应用问题,是基础题21、(1)(2)或【解析】(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.(2)设直线的方程为:,利用圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ERP系统选型教学课件
- 全媒体运营师岗位要求分析及试题及答案
- 全媒体运营师内容规划技能试题及答案
- 2024年陪诊师考试的结构性分析试题及答案
- 员工流失率分析与对策试题及答案
- 2024年陪诊师考试护理记录试题及答案
- 2024年人力资源管理师考试的应考技巧试题及答案
- 2024监理工程师题库建设试题及答案
- 黑龙江省哈尔滨六十九重点名校2024-2025学年中考物理试题压轴试卷含解析
- 黑龙江省哈尔滨第六中学2025届高三假期自主综合能力测试(三)语文试题含解析
- 2025年企业规章制度试题及答案
- 2025春人教版七年级英语下册重点知识默写
- 2025年驻马店全域矿业开发有限公司招聘27人笔试参考题库附带答案详解
- DB32T 5013-2025镉污染耕地土壤减污修复黏土矿物-四氧化三铁-海藻酸钠基功能材料制备技术规程
- 高中语文整本书阅读教学研究
- 2025年全国质量月活动总结参考(2篇)
- 中国近现代史纲要心得体会
- 缝纫培训课件
- 中建落地式脚手架施工方案
- 《中华人民共和国机动车驾驶人科目一考试题库》
- 倪海厦天纪学习笔记以及讲义
评论
0/150
提交评论