2023-2024学年上海市复旦大学附中浦东分校数学高二上期末学业质量监测试题含解析_第1页
2023-2024学年上海市复旦大学附中浦东分校数学高二上期末学业质量监测试题含解析_第2页
2023-2024学年上海市复旦大学附中浦东分校数学高二上期末学业质量监测试题含解析_第3页
2023-2024学年上海市复旦大学附中浦东分校数学高二上期末学业质量监测试题含解析_第4页
2023-2024学年上海市复旦大学附中浦东分校数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年上海市复旦大学附中浦东分校数学高二上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.2.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.53.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1444.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.5.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点(1,2),为锐角,且,则()A.-18 B.-6C. D.6.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.817.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.8.已知,则的大小关系为()A. B.C. D.9.在中,若,则()A.150° B.120°C.60° D.30°10.圆心在x轴负半轴上,半径为4,且与直线相切的圆的方程为()A. B.C. D.11.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.1112.已知一组数据为:2,4,6,8,这4个数的方差为()A.4 B.5C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体,点在底面内运动,且始终保持平面,设直线与底面所成的角为,则的最大值为______.14.设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______15.已知椭圆的短轴长为2,上顶点为,左顶点为,左、右焦点分别是,,且的面积为,点为椭圆上的任意一点,则的取值范围是______.16.曲线的一条切线的斜率为,该切线的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值18.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.19.(12分)若存在常数,使得对任意,,均有,则称为有界集合,同时称为集合的上界.(1)设,,试判断A、B是否为有界集合,并说明理由;(2)已知常数,若函数为有界集合,求集合的上界最小值.20.(12分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:21.(12分)随着生活条件的改善,人们健身意识的增强,健身器械比较畅销,某商家为了解某种健身器械如何定价可以获得最大利润,现对这种健身器械进行试销售.统计后得到其单价x(单位:百元)与销量y(单位:个)的相关数据如下表:单价x(百元/个)3035404550日销售量y(个)1401301109080(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;(2)若每个健身器械的成本为25百元,试销售结束后,请利用(1)中所求的线性回归方程确定单价为多少百元时,销售利润最大?(结果保留到整数),附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.参考数据:.22.(10分)已知函数(其中a常数)(1)求的单调递增区间;(2)若,时,的最小值为4,求a的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C2、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B3、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.4、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A5、A【解析】由终边上的点可得,由同角三角函数的平方、商数关系有,再应用差角、倍角正切公式即可求.【详解】由题设,,,则,又,,所以.故选:A6、B【解析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.7、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D8、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B9、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.10、A【解析】根据题意,设圆心为坐标为,,由直线与圆相切的判断方法可得圆心到直线的距离,解得的值,即可得答案【详解】根据题意,设圆心为坐标为,,圆的半径为4,且与直线相切,则圆心到直线的距离,解得:或13(舍,则圆的坐标为,故所求圆的方程为,故选:A11、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.12、B【解析】根据数据的平均数和方差的计算公式,准确计算,即可求解.【详解】由平均数的计算公式,可得,所以这4个数的方差为故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画出立体图形,因为面面,在底面内运动,且始终保持平面,可得点在线段上运动,因为面面,直线与底面所成的角和直线与底面所成的角相等,即可求得答案.【详解】连接和,面面在底面内运动,且始终保持平面可得点在线段上运动,面面,直线与底面所成的角和直线与底面所成的角相等面直线与底面所成的角为:有图像可知:长是定值,当最短时,,即最大,即角最大设正方体的边长为,故故答案为:【点睛】本题考查了求线面角的最大值,解题是掌握线面角的定义和处理动点问题时,应画出图形,寻找几何关系,考查了分析能力和计算能力,属于难题.14、【解析】根据已知设直线方程为与C联立,结合|BF|=2|AF|,利用韦达定理计算可得点A,B的坐标,进而求出向量的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【详解】令直线的方程为将直线方程代入批物线C:的方程,得令且,所以由抛物线的定义知,由|BF|=2|AF|可知,,则,解得:,,则A,B两点坐标分别为,则则.故答案为:15、【解析】根据的面积和短轴长得出a,b,c的值,从而得出的范围,得到关于的函数,从而求出答案【详解】由已知得,故,∵的面积为,∴,∴,又,∴,,∴,又,∴,∴.即的取值范围为.故答案为点睛】本题考查了椭圆的简单性质,函数最值的计算,熟练掌握椭圆的基本性质是解题的关键,属于中档题16、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由题可得,,即求;(2)由题可设直线方程与双曲线方程联立,利用韦达定理法即证【小问1详解】由题意可知在双曲线C中,,,,解得所以双曲线C的方程为;【小问2详解】证法一:由题可知,设直线,,,由,得,则,,∴,,;当直线的斜率不存在时,,此时.综上,为定值证法二:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,,,,由双曲线方程可得,,,,∵,∴,,证法三:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,∴,,由双曲线方程可得,,则,所以,,,∴为定值18、(1);(2).【解析】(1)根据题意设出圆方程,结合该圆与直线相切,求得半径,则问题得解;(2)设出点的坐标为,根据题意,求得的等量关系,再构造关于的函数关系,求得函数值域即可.【小问1详解】根据题意,设的方程为,又该圆与直线相切,故可得,则圆的方程为.【小问2详解】对圆:,令,则,不妨设,则,设点,因为点在圆内,故;因为是、的等比中项,故可得:,则,整理得;由可得,解得,则.故答案为:.19、(1)A不是有界集合,B是有界集合,理由见解析(2)【解析】(1)解不等式求得集合A;由,根据指数函数的性质求得集合B,由此可得结论;(2)由函数,得出函数单调递减,即有,分和两种情况讨论,求得集合的上界,再由集合的上界函数的单调性可求得集合的上界的最小值.【小问1详解】解:由得,即,,对任意一个,都有一个,故不是有界集合;,,,,是有界集合,上界为1;【小问2详解】解:,因为,所以函数单调递减,,因为函数为有界集合,所以分两种情况讨论:当,即时,集合的上界,当时,不等式为;当时,不等式为;当时,不等式为,即时,集合的上界,当,即时,集合的上界,同上解不等式得的解为,即时,集合的上界,综上得时,集合的上界;时,集合的上界.时,集合的上界是一个减函数,所以此时,时,集合的上界是增函数,所以,所以集合的上界最小值为;20、(1),(2)证明见解析【解析】(1)根据可得,从而可得;(2)利用错位相减法可得,从而可得,又,即可证明不等式成立.【小问1详解】解:∵,∴当时,,当时,,∴,经检验,也符合,∴,;【小问2详解】证明:因为,∴,∴∴,又∵,∴,所以21、(1);(2)确定单价为50百元时,销售利润最大.【解析】(1)根据参考公式和数据求出,进而求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论