版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏如皋市江安镇中心初中数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆C.抛物线 D.直线2.某同学为了调查支付宝中的75名好友的蚂蚁森林种树情况,对75名好友进行编号,分别为1,2,…,75,采用系统抽样的方法抽取一个容量为5的样本,已知11号,26号,56号,71号好友在样本中,则样本中还有一名好友的编号是()A.40 B.41C.42 D.393.为迎接2022年冬奥会,某校在体育冰球课上加强冰球射门训练,现从甲、乙两队中各选出5名球员,并分别将他们依次编号为1,2,3,4,5进行射门训练,他们的进球次数如折线图所示,则在这次训练中以下说法正确的是()A.甲队球员进球的中位数比乙队大 B.乙队球员进球的中位数比甲队大C.乙队球员进球水平比甲队稳定 D.甲队球员进球数的极差比乙队小4.已知在四棱锥中,平面,底面是边长为4的正方形,,E为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.5.“若”为真命题,那么p是(
)A. B.C. D.6.已知空间向量,,则()A. B.C. D.7.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.B.C.D.8.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.189.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.10.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.011.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.5812.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,若,,则数列的公比为___________.14.已知直线在两坐标轴上的截距分别为,,则__________.15.已知椭圆,为其右焦点,过垂直于轴的直线与椭圆相交所得的弦长为,则椭圆的方程为________.16.若直线与直线相互平行,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为的正方体中,为中点(1)求二面角的大小;(2)探究线段上是否存在点,使得平面?若存在,确定点的位置;若不存在,说明理由18.(12分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.19.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.20.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围21.(12分)已知数列的前n项和,递增等比数列满足,且.(1)求数列,的通项公式;(2)求数列的前n项和为.22.(10分)已知对于,函数有意义,关于k的不等式成立.(1)若为假命题,求k的取值范围;(2)若p是q的必要不充分条件,求m的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】首先建立平面直角坐标系,然后结合数量积定义求解其轨迹方程即可.【详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,则:,设,可得:,从而:,结合题意可得:,整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.2、B【解析】根据系统抽样等距性即可确定结果.【详解】根据系统抽样等距性得:11号,26号,56号,71号以及还有一名好友的编号应该按大小排列后成等差数列,样本中还有一名好友的编号为26号与56号的等差中项,即41号,故选:B【点睛】本题考查系统抽样,考查基本分析求解能力,属基础题.3、C【解析】根据折线图,求出甲乙中位数、平均数及方差、极差,即可判断各选项的正误.【详解】由题图,甲队数据从小到大排序为,乙队数据从小到大排序为,所以甲乙两队的平均数都为5,甲、乙进球中位数相同都为5,A、B错误;甲队方差为,乙队方差为,即,故乙队球员进球水平比甲队稳定,C正确.甲队极差为6,乙队极差为4,故甲队极差比乙队大,D错误.故选:C4、B【解析】建立空间直角坐标系,以向量法去求直线与平面所成角的正弦值即可.【详解】平面,底面是边长为4的正方形,则有,而,故平面,以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系如图:则,,,设直线与平面所成角为,又由题可知为平面的一个法向量,则故选:B5、A【解析】求不等式的解集,根据解集判断p.【详解】由解得-2<x<4,所以p是.故选:A.6、C【解析】直接利用向量的坐标运算法则求解即可【详解】因为,,所以,故选:C7、D【解析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【详解】由函数图象知,此三次函数在上处与直线相切,在点处与相切,下研究四个选项中函数在两点处的切线A:,将0代入,此时导数为,与点处切线斜率为矛盾,故A错误B:,将0代入,此时导数为,不为,故B错误;C:,将2代入,此时导数为,与点处切线斜率为3矛盾,故C错误;D:,将0,2代入,解得此时切线的斜率分别是,3,符合题意,故D正确;故选:D.8、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B9、B【解析】根据空间向量基本定理求解【详解】由已知故选:B10、B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B11、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.12、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】求出等比数列的公比,利用定义可求得数列的公比.【详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.14、##【解析】根据截距定义,分别令,可得.【详解】由直线,令得,即令,得,即,故.故答案为:15、##【解析】将代入椭圆的方程,可得出,可得出关于的等式,求出的值,进而可求得的值,由此可得出椭圆的方程.【详解】将代入椭圆的方程可得,可得,由已知可得,整理可得,,解得,所以,,因此,椭圆的方程为.故答案为:.16、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)点为线段上靠近点的三等分点【解析】(1)建立空间直角坐标系,分别写出点的坐标,求出两个平面的法向量代入公式求解即可;(2)假设存在,设,利用相等向量求出坐标,利用线面平行的向量法代入公式计算即可.【小问1详解】如下图所示,以为原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系,则,,,,,,.所以,设平面的法向量,所以,即,令,则,,所以,连接,因为,,,平面,平面,平面,所以平面,所以为平面的一个法向量,所以,由图知,二面角为锐二面角,所以二面角的大小为【小问2详解】假设在线段上存在点,使得平面,设,,,因为平面,所以,即所以,即解得所以在线段上存在点,使得平面,此时点为线段上靠近点的三等分点18、(1);(2).【解析】(1)根据已知求出即得椭圆的方程;(2)设l的方程为,,,联立直线和椭圆的方程得到韦达定理,根据得到,即得直线l的方程.【小问1详解】解:椭圆的焦距是4,所以焦点坐标是,.因为点在G上,所以,所以,.所以椭圆G的方程是.【小问2详解】解:显然直线l不垂直于x轴,可设l的方程为,,,将直线l的方程代入椭圆G的方程,得,则,.因为,所以,则,即,由,得,.所以,解得,即,所以直线l的方程为.19、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合面积公式即可求解小问1详解】由题意点的轨迹是以为焦点,直线为准线的抛物线,所以,则,所以动点的轨迹方程是.【小问2详解】由已知直线的方程是,设、,由得,,所以,则,故,20、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是21、(1),(2)【解析】(1)先求,再由求出,设等比数列的公比为q,由条件可得,解出结合条件可得答案.(2)由(1)可得,利用错位相减法可求【小问1详解】,当时,,也满足上式,∴,则.设等比数列的公比为q,由得,解得或.因为是递增等比数列,所以,.【小问2详解】①①①②:∴2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑料制品的微观结构与力学性能考核试卷
- 托儿所服务的儿童过敏与过敏原防控考核试卷
- 环境保护创新企业的先锋之路考核试卷
- 建筑物拆除电梯与升降机拆除考核试卷
- 宠物保姆与托儿服务考核试卷
- 建筑物拆除工程施工现场施工资料考核试卷
- 新能源汽车技术与智能交通系统考核试卷
- DB11∕T 3008.1-2018 人力资源服务规范 第1部分:通则
- 课件视频排版教学课件
- 偶戏课件教学课件
- 开拓海外市场:2024年新年计划
- 新媒体视听节目制作 第一章 新媒体时代导演的基本素养
- 2023-2024学年辽宁省沈阳126中八年级(上)期中数学试卷(含解析)
- 25题退役军人事务员岗位常见面试问题含HR问题考察点及参考回答
- 锅炉炉膛有限空间应急预案
- 深基坑工程质量验收标准
- 生产检验记录表
- 化工厂设计车间布置设计
- 幼儿园故事《水果屋》
- 工程设备采购方案(模板16篇)
- 工业产品质量安全风险管控清单及日管控、周排查、月调度记录表
评论
0/150
提交评论