版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京东城区高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.22.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.3.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差4.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.286.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.7.直线与直线的位置关系是()A.相交但不垂直 B.平行C.重合 D.垂直8.如图,四面体-,是底面△的重心,,则()A B.C. D.9.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.404210.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.411.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定12.已知椭圆=1(a>b>0)的右焦点为F,椭圆上的A,B两点关于原点对称,|FA|=2|FB|,且·≤a2,则该椭圆离心率的取值范围是()A.(0,] B.(0,]C.,1) D.,1)二、填空题:本题共4小题,每小题5分,共20分。13.已知为数列{}前n项和,若,且),则=___14.已知向量,且,则实数________________15.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________16.已知向量,,,若,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD是矩形,M是PA的中点,N是BC的中点,平面ABCD,且,(1)求证:∥平面PCD;(2)求平面MBC与平面ABCD夹角的余弦值18.(12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直,,,.(1)求点C到平面的距离;(2)线段上是否存在点F,使与平面所成角正弦值为,若存在,求出,若不存在,说明理由.19.(12分)要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?20.(12分)如图,已知正方体的棱长为,,分别是棱与的中点.(1)求以,,,为顶点的四面体的体积;(2)求异面直线和所成角的大小.21.(12分)已知关于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集为R,求k的取值范围.22.(10分)已知函数,(),(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值(2)当时,若函数在区间[k,2]上的最大值为28,求k的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用空间向量垂直的坐标运算即可解决.【详解】∵∴∴,解得,故选:B.2、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.3、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.4、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.5、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C6、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A7、C【解析】把直线化简后即可判断.【详解】直线可化为,所以直线与直线的位置关系是重合.故选:C8、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B9、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.10、B【解析】由两式相除即可求公比.【详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.11、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C12、B【解析】如图设椭圆的左焦点为E,根据题意和椭圆的定义可知,利用余弦定理求出,结合平面向量的数量积计算即可.【详解】由题意知,如图,设椭圆的左焦点为E,则,因为点A、B关于原点对称,所以四边形为平行四边形,由,得,,在中,,所以,由,得,整理,得,又,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】第一步找出数列周期,第二步利用周期性求和.【详解】,,,,,,可知数列{}是周期为4的周期数列,所以故答案为:2.14、【解析】,利用向量的数量积的坐标运算即可.【详解】,则,解得故答案为:15、5【解析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.16、【解析】首先求出的坐标,再根据向量垂直得到,即可得到方程,解得即可;【详解】解:因为向量,,,所以向量,因为,所以,即,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)【解析】(1)取PD的中点E,连接ME,CE,易证四边形是平行四边形,得到,再利用线面平行的判定定理证明;(2)建立空间直角坐标系,求得平面MBC的一个法向量,易知平面ABCD的一个法向量为:,由求解.【小问1详解】证明:如图所示:取PD的中点E,连接ME,CE,因为底面ABCD是矩形,M是PA的中点,N是BC的中点,所以,所以四边形是平行四边形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小问2详解】建立如图所示空间直角坐标系:则,所以,设平面MBC的一个法向量为,则,即,令,得,易知平面ABCD的一个法向量为:,所以,所以平面MBC与平面ABCD的夹角的余弦值为.18、(1)(2)存在,1【解析】(1)由题意建立空间直角坐标系,求得平面向量的法向量和相应点的坐标,利用点面距离公式即可求得点面距离(2)假设满足题意的点存在且满足,由题意得到关于的方程,解方程即可确定满足题意的点是否存在【小问1详解】解:如图所示,取中点,连结,,因为三角形是等腰直角三角形,所以,因为面面,面面面,所以平面,又因为,所以四边形是矩形,可得,则,建立如图所示的空间直角坐标系,则:据此可得,设平面的一个法向量为,则,令可得,从而,又,故求点到平面的距离【小问2详解】解:假设存在点,,满足题意,点在线段上,则,即:,,,,,据此可得:,,从而,,,,设与平面所成角所成的角为,则,整理可得:,解得:或(舍去)据此可知,存在满足题意的点,点为的中点,即19、当圆柱底面半径为,高为时,总成本最底.【解析】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,进而根据体积得到,然后求出表面积,进而运用导数的方法求得表面积的最小值,此时成本最小.【详解】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,每平方厘米金属包装造价为元,由题意得:,则,表面积造价,,令,得,令,得,的单调递减区间为,递增区间为,当圆柱底面半径为,高为时,总成本最底.20、(1)(2)【解析】(1)由题意可知该四面体为以为底面,以为高的四面体,可得四面体体积;(2)连接,,可得即为异面直线和所成的角的平面角,根据余弦定理可得角的大小.【小问1详解】解:连接,,,以,,,为顶点的四面体即为三棱锥,底面的面积,高,则其体积;【小问2详解】解:连接,,,则即为异面直线和所成的角的平面角,在中,,,,则,故,即和所成的角的的大小为.21、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分类讨论后可得的取值范围.【小问1详解】时,原不等式即为,其解为.【小问2详解】不等式的解集为R,当时,则有,解得,综上,.22、【解析】(1)求a,b的值,根据曲线与曲线在它们的交点处具有公共切线,可知切点处的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年全国小学四年级上科学仁爱版期末试卷(含答案解析)
- 2024年一级建造师劳动合同范本
- 2024年房地产公司投资入股协议书
- 2024年鱼塘转包协议书范本
- 个人借款合同样板2024年
- 2024年内蒙古考从业资格证客运试题
- 下潜 高清钢琴谱五线谱
- 2024年巢湖客运资格证考试内客
- 2024年民用爆破器材买卖合同转让协议
- 2024年贵阳客运资格证考试题库模拟考试
- 护照加急办理申请
- 部编版四年级道德与法治上册第一单元《与班级共成长》全部集体备课教案
- 建筑企业组织机构框架图(共1页)
- 位马利亚灵歌集ppt课件
- 泉州市园林绿化养护管理质量标准
- 头痛的鉴别诊断--ppt课件完整版
- 小学致敬抗美援朝观后有感作文随笔5篇
- 式三卷tmp综述
- 数字通信_10_2
- 中文停用词表(比较全面-有1208个停用词)
- 一个老施工员的忠告
评论
0/150
提交评论