无人机自主飞行系统实验室_第1页
无人机自主飞行系统实验室_第2页
无人机自主飞行系统实验室_第3页
无人机自主飞行系统实验室_第4页
无人机自主飞行系统实验室_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Aeronautics

&

AstronautAutonomous

Flight

SystemsLaboratoryAll

slides

and

material

copyright

ofUniversity

of

Washington

AutonomousFlight

Systems

LaboratoryAeronautics

&

AstronautAutonomous

Flight

SystemsLaboratoryResearch

and

Development

at

theAutonomous

Flight

Systems

LaboratoryUniversity

of

WashingtonSeattle,

WAGuggenheim

109,

AERB

214(206)

543-7748/research/afslReal

Time

Strategic

Mission

PlanningBaseObstacle/ThreatAvoidanceSearching/Target

IDCoordination

w/

surface

vehiclesAutonomous

Flight

Systems

Laboratory

Aeronautics

&

AstronautiPattern

hold/Team

assembly

TransitionUniversity

of

Washington3Aeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratorySystem

OverviewPreviously

funded

by

DARPA

&

AFOSRUniversity

of

Washington4Aeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratorySystem

Block

DiagramSolving

optimal

control

problems

in

real-timeUniversity

of

Washington5Stochastic

Problem

FormulationAutonomous

Flight

Systems

Laboratory

Aeronautics

&

AstronautiPredicted

probability

of

survival

of

each

vehicle

at

time

tq+1Predicted

probability

that

a

task

is

not

completedat

time

tq+1Team

utility

functionUniversity

of

Washington6Add

stuff

about

BAT

SIMDistributed

Architecture

forCoordination

of

Autonomous

VehiclesAutonomous

Flight

Systems

Laboratory

Aeronautics

&

Astronauti

Each

vehicle

plans

its

ownpath

and

makes

task

tradingdecisions

to

maximize

theteam

utility

function

There

is

one

activecoordinator

agent

at

a

timeefficiencyfailure

detection

local/global

informationexchanges

Computational

requirementfor

running

coordinator

agentis

small

compared

to

planning

Coordinator

role

can

betransferred

to

another

vehiclevia

a

voting

procedureUniversity

of

Washington7Evolution-based

Cooperative

PlanningSystem

(ECoPS)Autonomous

Flight

Systems

Laboratory

Aeronautics

&

Astronauti

Uses

Evolutionary

Computation-based

techniques

in

theoptimization

of

trading

decisionmakingandpath

planning

Task

planner

uses

price

andshared

information

in

addition

topredicted

states

of

the

world

formaking

trading

decisions

Task

planner

interacts

with

pathplanner

and

state

predictor

tosimultaneously

search

feasiblenear-optimal

task

and

path

plans.

We

call

this

system

the“Evolution-Based

CollaborativePlanning

System”

ECoPS,combining

market

basedtechniques

with

evolutionarycomputation(EC).University

of

Washington8Aeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratoryEvolutionary

Computation

(EC)

Motivated

by

evolutionprocess

found

in

nature

Population-basedstochastic

optimizationtechniqueMetaphorMappingUniversity

of

Washington9Aeronautics

&

AstronautiUniversity

of

Washington10Features

of

Evolution-BasedComputationAutonomous

Flight

Systems

LaboratoryProvides

a

feasible

solution

at

any

timeOptimality

is

a

bonusDynamic

replanningNon-linear

performance

functionCollision

avoidanceConstraints

on

vehicle

capabilitiesHandling

loss

of

vehiclesOperating

in

uncertain

dynamic

environmentsTiming

constraintsAeronautics

&

AstronautiMarket-based

Planning

forCoordinating

Team

TasksAutonomous

Flight

Systems

LaboratoryTask

allocation

problem:At

trading

round

nThe

goal

of

task

trading:Each

vehicle

proposeswhich

are

approved

by

the

auctioneerbased

on

bid

price.At

the

end

of

the

trading

round:University

of

Washington11Distributed

Task

Planning

AlgorithmAeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratoryDynamic

Path

Planning

Generate

feasible

paths

andplanned

actions

within

aspecified

time

limit

(ΔTs

)while

the

vehicles

are

inmotion.

Highly

dynamic

environmentrequires

a

high

bandwidthplanning

system

(i.e.small

ΔTs).

Formulate

the

problem

as

aModel-basedPredictiveControl

(MPC)

problemUniversity

of

Washington12Aeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratoryEC-Based

Path

PlanningMutationDynamic

PlanningPath

EncodingUniversity

of

Washington13Aeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratoryCollision

Avoidance

Model

each

site

in

the

environment

as

auncertainty

circular

area

with

radiusProbability

of

intersection:use

numerical

approximationcomputationally

easier

than

true

solution:

possible

intersection

region:

probability

density

field

function:

position

on

the

path

Ci

:

expected

site

locationv

:

velocity

of

the

vehicleUniversity

of

Washington14Aeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratoryCollision

Avoidance

ExampleUniversity

of

Washington15Aeronautics

&

AstronautiAutonomous

Flight

Systems

LaboratorySimulation

ResultsSimulation

on

the

Boeing

Open

Experimental

PlatformUniversity

of

Washington16Some

Aspects

of

ECoPSUniversity

of

Washington17Autonomous

Flight

Systems

Laboratory

Aeronautics

&

Astronauti

Eachvehicle

computes

its

own

trajectory

and

makes

decisionto

trade

its

tasks

with

other

vehicles.Vehicles

may

sacrifice

themselves

if

that

benefits

the

team.

Each

vehicle

needs

to

have

periodically

updated

locations

ofnearby

vehicles

only

for

collision

avoidance.

Each

vehicle

needs

to

know

the

information

about

theenvironment.

The

accuracy

of

the

information

affects

thequality

of

its

decision

making.

The

rate

of

environment

information

updates

shou

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论