2023-2024学年河北省唐山市路北区唐山一中高二数学第一学期期末教学质量检测模拟试题含解析_第1页
2023-2024学年河北省唐山市路北区唐山一中高二数学第一学期期末教学质量检测模拟试题含解析_第2页
2023-2024学年河北省唐山市路北区唐山一中高二数学第一学期期末教学质量检测模拟试题含解析_第3页
2023-2024学年河北省唐山市路北区唐山一中高二数学第一学期期末教学质量检测模拟试题含解析_第4页
2023-2024学年河北省唐山市路北区唐山一中高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北省唐山市路北区唐山一中高二数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B.C. D.2.已知椭圆的长轴长,短轴长,焦距长成等比数列,则椭圆离心率为()A. B.C. D.3.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm),那么该壶的容量约为()A.100 B.C.300 D.4004.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为A.11 B.12C.13 D.145.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个6.已知点是双曲线的左焦点,是双曲线右支上一动点,过点作轴垂线并延长交双曲线左支于点,当点向上移动时,的值()A.增大 B.减小C.不变 D.无法确定7.与的等差中项是()A. B.C. D.8.盘子里有肉馅、素馅和豆沙馅的包子共个,从中随机取出个,若是肉馅包子的概率为,不是豆沙馅包子的概率为,则素馅包子的个数为()A. B.C. D.9.函数的递增区间是()A. B.和C. D.和10.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切11.与直线关于轴对称的直线的方程为()A. B.C. D.12.已知复数满足,其中为虚数单位,则的共轭复数为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知方程,若此方程表示椭圆,则实数的取值范围是________;若此方程表示双曲线,则实数的取值范围是________.14.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________15.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______16.如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中,则点D到平面ACE的距离为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在矩形中,是的中点,是上,,且,如图,将沿折起至:(1)指出二面角的平面角,并说明理由;(2)若,求证:平面平面;(3)若是线段的中点,求证:直线平面;18.(12分)已知函数f(x)=x﹣lnx(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的极值.19.(12分)已知数列满足,(1)设,求证数列为等差数列,并求数列的通项公式;(2)设,数列的前n项和为,是否存在正整数m,使得对任意的都成立?若存在,求出m的最小值;若不存在,试说明理由20.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径的圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点21.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.22.(10分)已知是公差不为0的等差数列,其前项和为,,且,,成等比数列.(1)求和;(2)若,数列的前项和为,且对任意的恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B2、A【解析】由题意,,结合,求解即可【详解】∵椭圆的长轴长,短轴长,焦距长成等比数列∴∴又∵∴∴,即∴e=又在椭圆e>0∴e=故选:A3、B【解析】根据圆台的体积等于两个圆锥的体积之差,即可求出【详解】设大圆锥的高为,所以,解得故故选:B【点睛】本题主要考查圆台体积的求法以及数学在生活中的应用,属于基础题4、B【解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人∴从编号1~480的人中,恰好抽取480/20=24人,接着从编号481~720共240人中抽取240/20=12人考点:系统抽样5、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.6、C【解析】令双曲线右焦点为,由对称性可知,,结合双曲线的定义即可得出结果.【详解】令双曲线右焦点为,由对称性可知,,则,为常数,故选:C.7、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A8、C【解析】计算出肉馅包子和豆沙馅包子的个数,即可求得素馅包子的个数.【详解】由题意可知,肉馅包子的个数为,从中随机取出个,不是豆沙馅包子的概率为,则该包子是豆沙馅包子的概率为,所以,豆沙馅包子的个数为,因此,素馅包子的个数为.故选:C.9、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.10、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.11、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.12、D【解析】由复数除法求得后可得其共轭复数【详解】由题意,∴故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】分别根据椭圆、双曲线的标准方程的特征建立不等式即可求解.【详解】当方程表示椭圆时,则有且,所以的取值范围是;当方程表示双曲线时,则有或,所以的取值范围是.故答案为:;14、40【解析】结合系统抽样的抽样方法来确定最后抽取的号码.【详解】因为分段间隔为,故最后一个员工的号码为.故答案为:15、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:16、【解析】建立合适空间直角坐标系,分别表示出点的坐标,然后求解出平面的一个法向量,利用公式求解出点到平面的距离.【详解】以AB的中点O为坐标原点,分别以OE,OB所在的直线为x轴、y轴,过垂直于平面的方向为轴,建立如下图所示的空间直角坐标系,则,,设平面ACE的法向量,则,即,令,∴故点D到平面ACE的距离.故答案:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)为二面角的平面角,理由见解析(2)证明见解析(3)证明见解析【解析】(1)根据,结合二面角定义得到答案.(2)证明平面得到,得到平面,得到证明.(3)延长,交于点,连接,证明即可.【小问1详解】连接,则,,故为二面角的平面角.【小问2详解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小问3详解】延长,交于点,连接,易知,故故是的中点,是线段的中点,故,平面,且平面,故直线平面.18、(1)(2)极小值为,无极大值【解析】(1)求出函数的导函数,再根据导数的几何意义即可求出切线方程;(2)根据导数的符号求出函数的单调区间,再根据极值的定义即可得出答案.【小问1详解】解:,则,,即切线的斜率为0,所以曲线y=f(x)在点(1,f(1))处曲线的切线方程为;小问2详解】当时,,当时,,所以函数在上递减,在上递增,函数的极小值为,无极大值.19、(1);(2)存在,3【解析】(1)结合递推关系可证得bn+1-bn1,且b1=1,可证数列{bn}为等差数列,据此可得数列的通项公式;(2)结合通项公式裂项有求和有,再结合条件可得,即求【详解】(1)证明:∵,又由a1=2,得b1=1,所以数列{bn}是首项为1,公差为1的等差数列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依题意,要使对于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整数m的最小值为320、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P的方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】证明:由(1)知,则圆P的方程为设,,将与圆P的方程联立,可得,则,当时,,不妨令,则,此时;当时,直线DE的斜率为,则直线DE的方程为,即,即,令且,得,直线过点;综上,直线DE过定点21、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论