版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省株洲市茶陵县茶陵三中高二上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆关于直线对称圆的标准方程是()A. B.C. D.2.某校开展研学活动时进行劳动技能比赛,通过初选,选出共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),和去询问成绩,回答者对说“很遗㙳,你和都末拿到冠军;对说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种 B.600种C.480种 D.384种3.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形4.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.5.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.6.函数在单调递增的一个必要不充分条件是()A. B.C. D.7.椭圆的左、右焦点分别为、,上存在两点、满足,,则的离心率为()A. B.C. D.8.已知直线与平行,则的值为()A. B.C. D.9.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.10.已知抛物线的焦点为,过点的直线交抛物线于,两点,则的取值范围是()A. B.C. D.11.直线l:的倾斜角为()A. B.C. D.12.长方体中,,,,为侧面内(含边界)的动点,且满足,则四棱锥体积的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,命题p:,;命题q:,,且为真命题,则a的取值范围为______14.若抛物线上一点到其准线的距离为4,则抛物线的标准方程为___________.15.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第七个孩子分得斤数为___________.16.若恒成立,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,PD⊥底面ABCD,点F为棱PD的中点,二面角的余弦值为.(1)求PD的长;(2)求异面直线BF与PA所成角的余弦值;(3)求直线AF与平面BCF所成角的正弦值.18.(12分)已知三棱柱中,面底面,,底面是边长为的等边三角形,,、分别在棱、上,且.(1)求证:底面;(2)在棱上找一点,使得和面所成角的余弦值为,并说明理由.19.(12分)已知,2,4,6中的三个数为等差数列的前三项,且100不在数列中,102在数列中.(1)求数列的通项;(2)设,求数列的前项和.20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值21.(12分)已知函数,(1)求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数的取值范围22.(10分)已知是公差不为零等差数列,,且、、成等比数列(1)求数列的通项公式:(2)设.数列{}的前项和为,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先根据圆的标准方程得到圆的圆心和半径,求出圆心关于直线的对称点,进而写出圆的标准方程.【详解】因为圆的圆心为,半径为,且关于直线对称的点为,所以所求圆的圆心为、半径为,即所求圆的标准方程为.故选:D.2、D【解析】不是第一名且不是最后一名,的限制最多,先排有4种情况,再排,也有4种情况,余下的问题是4个元素在4个位置全排列,根据分步计数原理求解即可【详解】由题意,不是第一名且不是最后一名,的限制最多,故先排,有4种情况,再排,也有4种情况,余下4人有种情况,利用分步相乘计数原理知有种情况故选:D.3、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C4、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.5、A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题6、D【解析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D7、A【解析】作点关于原点的对称点,连接、、、,推导出、、三点共线,利用椭圆的定义可求得、、、,推导出,利用勾股定理可得出关于、的齐次等式,即可求得该椭圆的离心率.【详解】作点关于原点的对称点,连接、、、,则为、的中点,故四边形为平行四边形,故且,则,所以,,故、、三点共线,由椭圆定义,,有,所以,则,再由椭圆定义,有,因为,所以,在中,即,所以,离心率故选:A.8、C【解析】由两直线平行可得,即可求出答案.【详解】直线与平行故选:C.9、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题10、B【解析】当直线斜率存在时,设直线方程,联立方程组,结合根与系数关系可得,进而求得取值范围,当斜率不存在是,可得,两点坐标,进而可得的值.【详解】当直线斜率存在时,设直线方程为,,,联立方程,得,恒成立,则,,,,,所以,当直线斜率不存在时,直线方程为,所以,,,综上所述:,故选:B.11、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.12、D【解析】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,分析可知点的轨迹是以点、为焦点的椭圆,求出椭圆的方程,可知当点为椭圆与棱或的交点时,点到平面的距离取最小值,由此可求得四棱锥体积的最小值.【详解】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,设点,其中,,则、,因为平面,平面,则,所以,,同理可得,所以,,所以点的轨迹是以点、为焦点,且长轴长为的椭圆的一部分,则,,,所以,点的轨迹方程为,点到平面的距离为,当点为曲线与棱或棱的交点时,点到平面的距离取最小值,将代入方程得,因此,四棱锥体积的最小值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出命题p,q为真命题时的a的取值范围,根据为真可知p,q都是真命题,即可求得答案.【详解】命题p:,为真时,有,命题q:,为真时,则有,即,故为真命题时,且,即,故a的取值范围为,故答案为:14、【解析】先由抛物线的方程求出准线的方程,然后根据点到准线的距离可求,进而可得抛物线的标准方程.【详解】抛物线的准线方程为,点到其准线的距离为,由题意可得,解得,故抛物线的标准方程为.故答案为:.15、167【解析】由题设知8个孩子分得斤数是公差为17的等差数列,设第一个孩子分得斤,应用等差数列前n项和公式求,进而由等差数列通项公式求即可.【详解】由题意,设第一个孩子分得斤,则,所以,可得,故斤.故答案为:167.16、1【解析】利用导数研究的最小值为,再构造研究其最值,即可确定参数a的值.【详解】令,则且,当时,递减;当时,递增;所以,即在上恒成立,令,则,当时,递增;当时,递减;所以,综上,.故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)以为轴,为轴,轴与垂直,建立如图所示的空间直角坐标系,写出各点坐标,设,,由空间向量法求二面角,从而求得,得长;(2)由空间向量法求异面直线所成的角;(3)由空间向量法求线面角【小问1详解】以为轴,为轴,轴与垂直,由于菱形中,轴是的中垂线,建立如图坐标系,则,,,设,,,,设平面一个法向量为,则,令,则,,即,平面的一个法向量是,因为二面角余弦值为.所以,(负值舍去)所以;【小问2详解】由(1),,,,所以异面直线BF与PA所成角的余弦值为【小问3详解】由(1)平面的一个法向量为,又,,所以直线AF与平面BCF所成角的正弦值为18、(1)证明见解析;(2)为的中点,理由见解析.【解析】(1)取的中点,连接,利用面面垂直的性质定理可得出平面,可得出,再由,结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,设点,利用空间向量法可得出关于实数的方程,求出的值,即可得出结论.【详解】(1)取的中点,连接,如图:因为三角形是等边三角形,所以,又因为面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、,在上找一点,其中,,,,设面的一个法向量,则,不妨令,则,和面所成角的余弦值为,则,解得或(舍),所以,为的中点,符合题意.19、(1)(2)【解析】(1)确定数列为递增数列,然后由4个数确定等差数列,得通项公式,验证100和102是否为数列中的项得结论;(2)由裂项相消法求和【小问1详解】首先数列是递增数列,当2,4,6为的前三项时,易知此时,100,102都是该数列中的项,不满足题意当,2,6为的前三项时,易知此时,100不是该数列中的项,102是该数列中的项,满足题意所以【小问2详解】因为所以所以.20、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0,,,所以,则,所以,故;【小问2详解】解:解:因为,设平面的法向量为,则,即,令,则,,故,因为底面,所以的一个法向量为,所以,故平面与平面夹角的余弦值为21、(1);(2).【解析】(1)求出函数的导数,计算,,求出切线方程即可;(2)问题转化为,利用导函数求出的最大值,求出的范围即可.【小问1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度牛肉产品绿色认证与环保标识合同4篇
- 二零二五版暖通设备研发与制造合同4篇
- 2025年度农业品牌授权合作合同范本4篇
- 2025年度婴幼儿奶粉线上线下融合营销合作合同范本
- 2025年度门脸房屋租赁与新能源汽车充电站建设合同4篇
- 2025年度土地流转收益分配合同示范文本
- 二零二五年度房地产公司打字员招聘合同4篇
- 二零二五年度互联网+期权合约合同范本4篇
- 二零二五年度智能安防系统技术服务合同协议书2篇
- 2025年度苹果出口贸易合同模板4篇
- 七上-动点、动角问题12道好题-解析
- 2024年九省联考新高考 数学试卷(含答案解析)
- 红色历史研学旅行课程设计
- 下运动神经元损害综合征疾病演示课件
- 北师大版三年级数学(上册)看图列式计算(完整版)
- 2023中考地理真题(含解析)
- 麻醉药品、精神药品月检查记录表
- 浙江省宁波市海曙区2022学年第一学期九年级期末测试科学试题卷(含答案和答题卡)
- 高考英语词汇3500电子版
- 建院新闻社成立策划书
- JJF 1101-2019环境试验设备温度、湿度参数校准规范
评论
0/150
提交评论