2023-2024学年广东省韶关市新丰一中高二上数学期末经典模拟试题含解析_第1页
2023-2024学年广东省韶关市新丰一中高二上数学期末经典模拟试题含解析_第2页
2023-2024学年广东省韶关市新丰一中高二上数学期末经典模拟试题含解析_第3页
2023-2024学年广东省韶关市新丰一中高二上数学期末经典模拟试题含解析_第4页
2023-2024学年广东省韶关市新丰一中高二上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省韶关市新丰一中高二上数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若构成空间的一个基底,则下列向量能构成空间的一个基底的是()A.,, B.,,C.,, D.,,2.设是可导函数,当,则()A.2 B.C. D.3.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.4.过点且与抛物线只有一个公共点的直线有()A.1条 B.2条C.3条 D.0条5.已知是虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知为虚数单位,复数是纯虚数,则()A B.4C.3 D.27.已知直线与直线垂直,则()A. B.C. D.8.设,,,则a,b,c的大小关系为()A. B.C. D.9.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.10.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.11.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.412.若,则复数在复平面内对应的点在()A.曲线上 B.曲线上C.直线上 D.直线上二、填空题:本题共4小题,每小题5分,共20分。13.直线与曲线有且仅有一个公共点.则b的取值范围是__________14.,成立为真命题,则实数的取值范围______.15.一条直线过点,且与抛物线交于,两点.若,则弦中点到直线的距离等于__________16.已知抛物线的顶点为坐标原点,焦点坐标是,则该抛物线的标准方程为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.18.(12分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?19.(12分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域20.(12分)已知函数,.(1)当时,求不等式的解集;(2)若在上恒成立,求取值范围.21.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.22.(10分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A:,因此A不满足题意;对于B:根据题意知道,,不共面,而和显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C:,故C不满足题意;对于D:显然有,选项D不满足题意.故选:B2、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C3、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C4、B【解析】过的直线的斜率存在和不存在两种情况分别讨论即可得出答案.【详解】易知过点,且斜率不存在的直线为,满足与抛物线只有一个公共点.当直线的斜率存在时,设直线方程为,与联立得,当时,方程有一个解,即直线与扰物线只有一个公共点.故满足题意的直线有2条.故选:B5、D【解析】根据复数的几何意义即可确定复数所在象限【详解】复数在复平面内对应的点为则复数在复平面内对应的点位于第四象限故选:D6、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由为纯虚数,∴,解得:,则,故选:C7、D【解析】根据互相垂直两直线的斜率关系进行求解即可.【详解】由,所以直线的斜率为,由,所以直线的斜率为,因为直线与直线垂直,所以,故选:D8、A【解析】构造函数,求导判断其单调性即可【详解】令,,令得,,当时,,单调递增,,,,,,,故选:A9、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D10、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.11、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.12、B【解析】根据复数的除法运算,先化简,进而求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,因此复数在复平面内对应的点为,可知其在曲线上.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、或.【解析】根据曲线方程得曲线的轨迹是个半圆,数形结合分析得两种情况:(1)直线与半圆相切有一个交点;(2)直线与半圆相交于一个点,综合两种情况可得答案.【详解】由曲线,可得,表示以原点为圆心,半径为的右半圆,是倾斜角为的直线与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据,所以,结合图像可得;(2)直线与半圆的上半部分相交于一个交点,由图可知.故答案为:或.【点睛】方法点睛:处理直线与圆位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法;如果或有限制,需要数形结合进行分析.14、.【解析】根据题意转化为,恒成立,得到,即可求解.【详解】由题意,命题,成立为真命题,即,恒成立,当时,,所以,即实数的取值范围.故答案为:.15、【解析】求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离【详解】解:如图,抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于故答案为:16、【解析】根据焦点坐标即可得到抛物线的标准方程【详解】因为抛物线的顶点为坐标原点,焦点坐标是,所以,解得,抛物线的标准方程为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.18、(1)(2)(3)【解析】(1)根据列举法列出所有的可能基本事件,进而得出每个学生恰好拿到自己作业的概率;(2)利用对立事件的概念即可求得结果;(3)结合(1)即可得出每个学生拿的都不是自己作业的事件数.【小问1详解】设这三个学生分别为A、B、C,A的作业为a,B的作业为b,C的作业为c,则基本事件为:,则基本事件总数为6,设每个学生恰好拿到自己作业为事件E,事件E包含的事件数为l,所以;小问2详解】设每个学生不都拿到自己作业为事件F,因为事件F的对立事件为E,所以;【小问3详解】设每个学生拿的都不是自己作业为事件G,事件G包含的事件数为2,.19、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可【详解】解:(1)由题意得,,令,得,令,得或,故函数的单调递增区间为,单调递减区间为(2)易知,因为,所以(或由,可得),又当时,,所以函数在区间上的值域为【点睛】确定函数单调区间的步骤:第一步,确定函数的定义域;第二步,求;第三步,解不等式,解集在定义域内的部分为单调递增区间;解不等式,解集在定义域内的部分为单调递减区间20、(1)或;(2).【解析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当时,,即,解得或,所以,解集为或.(2)因为在上恒成立,①当时,恒成立;②当时,,解得,综上,的取值范围为.21、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.22、(1).(或标准形式)(2)或【解析】(1)根据题意,求出中垂线方程,与直线联立,可得圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论