版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽黄山市数学高二上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.2.已知不等式解集为,下列结论正确的是()A. B.C D.3.如果,那么下面一定成立的是()A. B.C. D.4.已知数列满足,,则()A. B.C. D.5.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.1776.已知中,内角所对的边分别,若,,,则()A. B.C. D.7.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.8.在长方体中,,,点分别在棱上,,,则()A. B.C. D.9.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.10.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.411.某公司要建造一个长方体状的无盖箱子,其容积为48m3,高为3m,如果箱底每1m2的造价为15元,箱壁每1m2造价为12元,则箱子的最低总造价为()A.72元 B.300元C.512元 D.816元12.,,,,设,则下列判断中正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列为严格递增数列,且对任意,都有且.若对任意恒成立,则________14.已知椭圆的右顶点为A,上顶点为B,且直线l与椭圆交于C,D两点,若直线l直线AB,设直线AC,BD的斜率分别为,,则的值为___________.15.若双曲线的渐近线方程为,则该双曲线的离心率为___________;若,则双曲线的右焦点到渐近线的距离为__________.16.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是公差不为零的等差数列,,且,,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和18.(12分)2021年11月初某市出现新冠病毒感染者,该市教育局部署了“停课不停学”的行动,老师们立即开展了线上教学.某中学为了解教学效果,于11月30日复课第一天安排了测试,数学教师为了调查高二年级学生这次测试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的统计图:(1)根据统计图填写下面列联表,是否有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时25每天在线学习数学的时长超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,按分层抽样的方法抽取5名,再从这5名同学中随机抽取2名,求这两名同学中至多有一名每天在线学习数学的时长超过1小时的概率附:,其中.参考数据:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)设命题方程表示中心在原点,焦点在坐标轴上的双曲线;命题,,若“”为假命题,“”为真命题,求实数的取值范围.20.(12分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.21.(12分)在平面直角坐标系xOy中,已知椭圆C:的焦距为4,且过点.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心(高的交点),若存在,求出直线l的方程:若不存在,请说明理由.22.(10分)已知函数.(I)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C2、C【解析】根据不等式解集为,得方程解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.3、C【解析】根据不等式的基本性质,以及特例法和作差比较法,逐项计算,即可求解.【详解】对于A中,当时,,所以不正确;对于B中,因为,根据不等式的性质,可得,对于C中,由,可得可得,所以,所以正确;对于D中,由,可得,则,所以,所以不正确.故选:C.4、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.5、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.6、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.7、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.8、D【解析】依题意可得,从而得到,即可得到,从而得解;【详解】解:由长方体的性质可得,又,所以,因为,所以,所以,因为,所以;故选:D9、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D10、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B11、D【解析】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,则f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低总造价【详解】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,当且仅当x,即x=4时,f(x)取最小值816元故选:D12、D【解析】通过凑配构造的方式,构造出新式子,且可以化简为整数,然后利用放缩思想得到S的范围.【详解】解:,,,,,;,.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、66【解析】根据恒成立和严格递增可得,然后利用递推求出,的值,不难发现在此两项之间的所有项为连续正整数,于是可得,,然后可解.【详解】因为,且数列为严格递增数列,所以或,若,则(矛盾),故由可得:,,,,,,,,,,,,,因,,,且数列为严格递增数列,,所以,,所以,所以故答案为:6614、##0.25【解析】求出点A,B坐标,设出直线l的方程,联立直线l与椭圆方程,借助韦达定理即可计算作答.【详解】依题意,点,直线AB斜率为,因直线l直线AB,则设直线l方程为:,,由消去y并整理得:,,解得,于是有或,设,则,有,因此,,所以的值为.故答案:15、①.②.3【解析】由渐近线方程知,结合双曲线参数关系及离心率的定义求双曲线的离心率,由已知可得右焦点为,应用点线距离公式求距离.【详解】由题设,,则,当时,,则双曲线为,故右焦点为,所以右焦点到渐近线的距离为.故答案为:,3.16、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由等差数列以及等比中项的公式代入联立求解出,再利用等差数列的通项公式即可求得答案;(2)利用分组求和法,根据求和公式分别求出等差数列与等比数列的前项和再相加即可.【详解】(1)由题意,,,即,联立解得,所以数列的通项公式为;(2)由(1)得,,所以【点睛】关于数列前项和的求和方法:分组求和法:两个数列等差或者等比数列相加时利用分组求和法计算;裂项相加法:数列的通项公式为分式时可考虑裂项相消法求和;错位相减法:等差乘以等比数列的情况利用错位相减法求和.18、(1)表格见解析,有(2)【解析】(1)根据统计图计算填表即可;(2)根据古典概型计算公式计算即可.【小问1详解】根据统计图可得:每天在线学习数学的时长不超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长不超过1小时数学成绩超过120分的有人,每天在线学习数学的时长超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长超过1小时数学成绩超过120分的有人,可得列联表如下:数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时151025每天在线学习数学的时长超过1小时51520总计202545根据列联表中的数据,所以有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”【小问2详解】由列联表可得,被抽查学生中这次数学成绩超过120分的有25人,其中每天在线学习数学的时长不超过1小时的有10人,每天在线学习数学的时长超过1小时的有15人,人数比为2∶3,按分层抽样每天在线学习数学的时长不超过1小时的抽2人,记为:1,2;每天在线学习数学的时长超过1小时的抽3人,记为:a,b,c.所有可能结果如下:,共计10种.设事件A为“两名同学中至多有一名每天在线学习数学时长超过一小时”包含这7种可能结果所以19、【解析】求出当命题、分别为真命题时实数的取值范围,分析可知、中一真一假,分真假、假真两种情况讨论,求出对应的实数的取值范围,综合可得结果.【详解】解:若为真命题,则,即,解得,若为真命题,则,解得,因为“”为假命题,“”为真命题,则、中一真一假,若真假,则,可得,若假真,则,此时.综上所述,实数的范围为.20、(1)证明见解析(2)【解析】(1)由线面平行的判定定理证明;(2)建立空间直角坐标系,用空间向量法求异面直线所成的角【小问1详解】证明:且,由三角形相似可得,,,又,,又平面,平面平面;【小问2详解】解:以为坐标原点,分别以为轴建立空间坐标系,如图.则设异面直线所成角为,则21、(1)(2)存在:【解析】(1)根据题意,列出关于a,b,c的关系,计算求值,即可得答案.(2)由(1)可得B、F点坐标,可得直线BF的斜率,根据F为垂心,可得,可得直线l的斜率,设出直线l的方程,与椭圆联立,根据韦达定理,结合垂心的性质,列式求解,即可得答案.【小问1详解】因为焦距为4,所以,即,又过点,所以,又,联立求得,所以椭圆C的方程为【小问2详解】由(1)可得,所以,因为F为垂心,直线BF与直线l垂直,所以,则,即直线l的斜率为1,设直线l的方程为,,与椭圆联立得,,所以,因为F为垂心,所以直线BN与直线MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又时,直线l过点B,不符合题意,所以,所以存在直线l:,满足题意.22、(1)(2)【解析】(Ⅰ)先求的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人住宅装潢协议范本(2024年修订)版
- 2025年度叉车安全操作培训课程优化与推广合同4篇
- 2025版厂房买卖及土地使用权变更与售后服务合同4篇
- 专业咨询顾问合作合同(2024年度版)版B版
- 2025年度拆除宴会厅墙体改造项目施工协议4篇
- 2024陶瓷杯系列新品研发与市场推广合作合同3篇
- 2025年度企业股权激励计划税务筹划与合规合同3篇
- 2025年新能源电站设备购销合同协议4篇
- 2025年度医疗中心场地租赁及医疗设备租赁补充协议3篇
- 2025年度医疗设备存放租赁合同(2025年度)4篇
- 茶室经营方案
- 军队文职岗位述职报告
- 小学数学六年级解方程练习300题及答案
- 电抗器噪声控制与减振技术
- 中医健康宣教手册
- 2024年江苏扬州市高邮市国有企业招聘笔试参考题库附带答案详解
- 消费医疗行业报告
- 品学课堂新范式
- GB/T 1196-2023重熔用铝锭
- 运输行业员工岗前安全培训
- 公路工程安全风险辨识与防控手册
评论
0/150
提交评论