




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省芜湖市四校联考高二上数学期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方体中,E、F分别是与的中点,则直线ED与所成角的余弦值是()A. B.C. D.2.如果,,那么直线不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知等差数列的前n项和为,且,,则为()A. B.C. D.4.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A B.C. D.5.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.6.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.7.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.1178.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A. B.C. D.9.过双曲线右焦点F作双曲线一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若,则双曲线C的离心率为()A.或 B.2或C.或 D.2或10.已知函数的定义域为,若,则()A. B.C. D.11.已知正数x,y满足,则取得最小值时()A. B.C.1 D.12.给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3 B.2C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.某位同学参加物理、化学、政治科目的等级考,依据以往成绩估算该同学在物理、化学、政治科目等级中达的概率分别为假设各门科目考试的结果互不影响,则该同学等级考至多有1门学科没有获得的概率为___________.14.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.15.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.16.在数列中,,,记是数列的前项和,则=___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)试讨论函数的单调性.18.(12分)已知椭圆的离心率为,且点在椭圆上(1)求椭圆的标准方程;(2)若过定点的直线交椭圆于不同的两点、(点在点、之间),且满足,求的取值范围.19.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.20.(12分)已知直线经过点且斜率为(1)求直线的一般式方程(2)求与直线平行,且过点的直线的一般式方程(3)求与直线垂直,且过点的直线的一般式方程21.(12分)某保险公司根据官方公布的历年营业收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序号x12345678910营业收入y(亿元)0.529.3633.6132352571912120716822135由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型(b和a是待定参数)来拟合y和x的关系.这时,可以对年份序号做变换,即令,得,由表1可得变换后的数据见表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根据表中数据,建立y关于t的回归方程(系数精确到个位数);(2)根据(1)中得到的回归方程估计2021年的营业收入,以及营业收入首次超过4000亿元的年份.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:.22.(10分)为了了解某工厂生产的产品情况,从该工厂生产的产品随机抽取了一个容量为200的样本,测量它们的尺寸(单位:),数据分为,,,,,,七组,其频率分布直方图如图所示.(1)根据频率分布直方图,求200件样本中尺寸在内的样本数;(2)记产品尺寸在内为等品,每件可获利6元;产品尺寸在内为不合格品,每件亏损3元;其余的为合格品,每件可获利4元.若该机器一个月共生产2000件产品.以样本的频率代替总体在各组的频率,若单月利润未能达到9000元,则需要对该工厂设备实施升级改造.试判断是否需要对该工厂设备实施升级改造.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】以A为原点建立空间直角坐标系,求出E,F,D,D1点的坐标,利用向量求法求解【详解】如图,以A为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选:A【点睛】本题考查异面直线所成角的求法,属于基础题.2、A【解析】将直线化为,结合已知条件即可判断不经过的象限.【详解】由题设,直线可写成,又,,∴,,故直线过二、三、四象限,不过第一象限.故选:A.3、C【解析】直接由等差数列求和公式结合,求出,再由求和公式求出即可.【详解】由题意知:,解得,则.故选:C.4、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B5、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.6、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.7、B【解析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【详解】因为等差数列中,,则.故选:B.8、B【解析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B9、D【解析】求得点A,B的坐标,利用转化为坐标比求解.【详解】不妨设直线,由题意得,解得,即;由得,即,因为,所以,所以当时,,;当时,,则,故选:D10、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.11、B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,即时,取等号,而,所以解得,故选:B12、C【解析】若函数是幂函数,则函数的图象不过第四象限,原命题是真命题,则其逆否命题也是真命题;其逆命题为:若函数的图象不过第四象限,则函数是幂函数是假命题,所以原命题的否命题也是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.选C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】考虑3门或者2门两种情况,计算概率得到答案.【详解】.故答案为:.14、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:15、【解析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.16、930【解析】当为偶数时,,所以数列前60项中偶数项的和,当为奇数时,,因此数列是以1为首项,公差为2等差数列,前60项中奇数项的和为,所以.考点:递推数列、等差数列.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析.【解析】(1)由,求导,得到,写出切线方程;(2)求导,再分,,讨论求解.【小问1详解】解:因为,所以,则,所以,所以曲线在点处的切线方程是,即;【小问2详解】因为,所以,当时,成立,则在上递减;当时,令,得,当时,,当时,,所以在上递减,在上递增;综上:当时,在上递减;当时,在上递减,在上递增;18、(1)(2)【解析】(1)代入点坐标,结合离心率,以及即得解;(2)设直线方程,与椭圆联立,转化为,结合韦达定理和判别式,分析即得解【小问1详解】由题意可知:,解得:椭圆的标准方程为:【小问2详解】①当直线斜率不存在,方程为,则,.②当直线斜率存在时,设直线方程为,联立得:.由得:.设,,则,,又,,,则,,所以,所以,解得:,又,综上所述:的取值范围为.19、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的计算能力和综合应用能力.20、(1)(2)(3)【解析】(1)先写点斜式方程,再化一般式,(2)根据平行设一般式,再代点坐标得结果,(3)根据垂直设一般式,再代点坐标得结果.【详解】(1)(2)设所求方程为因为过点,所以(3)设所求方程为因为过点,所以【点睛】本题考查直线方程,考查基本分析求解能力,属基础题.21、(1);(2)估计2021年的营业收入约为2518亿元,估计营业收入首次超过4000亿元的年份为2024年.【解析】(1)根据的公式,将题干中的数据代入,即得解;(2)代入,可估计2021年的营业收入;令,可求解的范围,继而得到的范围,即得解【详解】(1),,故回归方程为.(2)2021年对应的t的值为121,营业收入,所以估计2021年的营业收入约为2518亿元.依题意有,解得,故.因为,所以估计营业收入首次超过4000亿元的年份序号为14,即2024年.22、(1)件;(2)需要对该工厂设备实施升级改造.【解析】(1)根据评论分布直方图面积之和为1列等式计算得,用200乘以内频率即可得出答案;(2)根据题意计算等品件,不合格品有件,进而得合格品有件,根据题意计算其利润与9000比较判定需要对该工厂设备实施升级改造.【详解】解:(1)因为,解得,所以200件样本中尺寸在内的样本数为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于信息技术支持的初中物理实验操作能力培养策略研究论文
- 中学物理实验误差控制与脑机接口信号处理算法融合创新论文
- 初中生校园涂鸦艺术教育与团队协作能力的培养论文
- 艾滋检测点管理制度
- 苗圃场运营管理制度
- 茶艺功能室管理制度
- 设备承诺书范文
- 北京晶城秀府房地产项目整合推广案
- 八年级思品上册(湘师大版)教学课件-第一节 生活中的法律保护
- 自动化生产线运行与维护课程标准
- 2025年中考道法时政新闻选择题预测100题
- 小学音乐教师个人成长研修方案及规划
- 2025-2030中国多融合蛋白行业市场现状供需分析及投资评估规划分析研究报告
- 危险性较大分部分项工程及建筑施工现场易发生重大事故的部位环节的预防监控措施和应应急处理预案
- 养老护理员四级试题含答案
- 承插型盘扣式钢管脚手架安全技术标准JGJT231-2021规范解读
- 尾矿库安全知识培训课件
- 地铁行车设备培训课件
- 国开现代管理原理形考作业1-4试题及答案
- 鲁班面试试题及答案
- T-CESA 1281-2023 制造业企业质量管理能力评估规范
评论
0/150
提交评论