2023-2024学年安徽省六安市第二中学河西校区数学高二上期末联考模拟试题含解析_第1页
2023-2024学年安徽省六安市第二中学河西校区数学高二上期末联考模拟试题含解析_第2页
2023-2024学年安徽省六安市第二中学河西校区数学高二上期末联考模拟试题含解析_第3页
2023-2024学年安徽省六安市第二中学河西校区数学高二上期末联考模拟试题含解析_第4页
2023-2024学年安徽省六安市第二中学河西校区数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省六安市第二中学河西校区数学高二上期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或42.已知二次函数交轴于,两点,交轴于点.若圆过,,三点,则圆的方程是()A. B.C. D.3.直线的倾斜角的大小为()A. B.C. D.4.在棱长为1的正方体中,为的中点,则点到直线的距离为()A. B.1C. D.5.若函数有两个零点,则实数a的取值范围是()A. B.C. D.6.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.7.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.8.在的展开式中,的系数为()A. B.5C. D.109.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.10.双曲线的左、右焦点分别为、,过点且斜率为的直线与双曲线的左右两支分别交于P、Q两点,若,则双曲线C的离心率为()A. B.C. D.11.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.12.若,则()A.22 B.19C.-20 D.-19二、填空题:本题共4小题,每小题5分,共20分。13.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________14.命题“矩形的对角线相等”的否命题是________.15.已知长方体中,,,则点到平面的距离为______16.在平面直角坐标系中,已知双曲线的左,右焦点分别为,,过且与圆相切的直线与双曲线的一条渐近线相交于点(点在第一象限),若,则双曲线的离心率___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为庆祝中国共产党成立100周年,某校举行了党史知识竞赛,在必答题环节,甲、乙两位选手分别从3道选择题(1)甲至少抽到1道填空题(2)甲答对的题数比乙多的概率.18.(12分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.19.(12分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长20.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.21.(12分)已知抛物线上一点到其焦点F的距离为2.(1)求拋物线方程;(2)直线与拋物线相交于两点,求的长.22.(10分)已知函数(1)当时,求函数的极值;(2)当时,若恒成立,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.2、C【解析】由已知求得点A、B、C的坐标,则有AB的垂直平分线必过圆心,所以设圆的圆心为,由,可求得圆M的半径和圆心,由此求得圆的方程.【详解】解:由解得或,所以,又令,得,所以,因为圆过,,三点,所以AB的垂直平分线必过圆心,所以设圆的圆心为,所以,即,解得,所以圆心,半径,所以圆的方程是,即,故选:C3、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选4、B【解析】建立空间直角坐标系,利用空间向量点到直线的距离公式进行求解即可【详解】建立如图所示的空间直角坐标系,由已知,得,,,,,所以在上的投影为,所以点到直线的距离为故选:B5、C【解析】函数有两个零点等价于方程有两个根,等价于与图象有两个交点,通过导数分析的单调性,根据图象即可求出求出的范围.【详解】函数有两个零点,方程有两个根,,分离参数得,与图象有两个交点,令,,令,解得当时,,在单调递增,当时,,在单调递减,且在处取得极大值及最大值,可以画出函数的大致图象如下:观察图象可以得出.故选:C.【点睛】本题主要考查函数零点的应用,构造函数求函数的导数,利用函数极值和导数之间的关系是解决本题的关键.6、B【解析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.7、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.8、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项9、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D10、C【解析】由,且,可得,再结合,可得,进而在△中,由余弦定理可得到齐次方程,求出即可.【详解】由题意,可得,因为,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,则,即,解得,因为,所以.故选:C.【点睛】方法点睛:本题考查求双曲线的离心率,属于中档题.双曲线离心率的求法:(1)由条件直接求出(或或),或者寻找(或或)所满足的关系,利用求解;(2)根据条件列出的齐次方程,利用转化为关于的方程,解方程即可,注意根据对所得解进行取舍.11、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B12、C【解析】将所求进行变形可得,根据二项式定理展开式,即可求得答案.【详解】由题意得所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、405【解析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,14、“若一个四边形不是矩形,则它的对角线不相等”【解析】否命题是条件否定,结论否定,即可得解.【详解】否命题是条件否定,结论否定,所以命题“矩形的对角线相等”的否命题是“若一个四边形不是矩形,则它的对角线不相等”故答案为:“若一个四边形不是矩形,则它的对角线不相等”15、##2.4【解析】过作于,可证即为点到平面的距离.【详解】过作于,∵是长方体,∴平面平面,又∵平面平面,∴平面,设点到平面的距离为,∵∥平面,∴根据等面积法得,故答案为:.16、2【解析】设切点,根据,可得,在中,利用余弦定理构造齐次式,从而可得出答案.【详解】解:设切点,由,∴,∵为中点,则为中位线,∴,,中,,,,∴.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)把3道选择题(2)设,分别表示甲答对1道题,2道题的事件,,分别表示乙答对0道题,1道题的事件,分别求出它们的概率,甲答对的题数比乙多这个事件是,然后由相互独立的事件和互斥事件的概率公式计算【详解】解:(1)记3道选择题则试验的样本空间,.共有10个样本点,且每个样本点是等可能发生的,所以这是一个古典概型.记事件A=“甲至少抽到1道填空题,.所以,,.所以,.因此,甲至少抽到1道填空题(2)设,分别表示甲答对1道题,2道题的事件,分别表示乙答对0道题,1道题的事件,根据独立性假定,得,.,.记事件B=“甲答对的题数比乙多”,则,且,,两两互斥,与,与,与分别相互独立,所以..因此,甲答对的题数比乙多的概率为.18、(1)(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知可得出,求出的值,即可得解;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】解:平面,,以点为坐标原点,、、所在直线分别为、、轴建立如图所示的空间直角坐标系,设,则、、、,则,,,则,解得,故.【小问2详解】解:,则,又、、,所以,,,设为平面的法向量,则,取,可得,显然,为平面的一个法向量,,因此,平面与平面夹角的余弦值为.19、(1)证明见解析(2)【解析】(1)利用正弦定理结合两角和的正弦公式求出的值,结合角的取值范围可求得角的值,可求得的值,即可证得结论成立;(2)利用三角形的面积公式可求得的值,结合余弦定理可求得的值,进而可求得的周长.【小问1详解】证明:由正弦定理及,得,所以,,所以,,,则,所以,,又,,,因此,、、成等差数列.【小问2详解】解:,,又,,故的周长为.20、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.21、(1)(2)【解析】(1)根据抛物线焦半径公式即可得解;(2)联立方程组求出交点坐标,即可得到弦长.【小问1详解】由题:抛物线上一点到其焦点F的距离为2,即,所以抛物线方程:【小问2详解】联立直线和得,解得,,22、(1)极大值;极小值(2)【解析】(1)利用导数来求得的极大值和极小值.(2)由不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论