版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题型一用归纳推理发现规律例1:通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。;;;.解析:猜想:证明:左边===右边注;注意观察四个式子的共同特征或规律(1)结构的一致性,(2)观察角的“共性”(1)先猜后证是一种常见题型(2)归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性)题型二用类比推理猜想新的命题例2:已知正三角形内切圆的半径是高的,把这个结论推广到空间正四面体,类似的结论是______.解析:原问题的解法为等面积法,即,类比问题的解法应为等体积法,即正四面体的内切球的半径是高注:(1)不仅要注意形式的类比,还要注意方法的类比(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;圆锥曲线间的类比等(3)在平面和空间的类比中,三角形对应三棱锥(即四面体),长度对应面积;面积对应体积;点对应线;线对应面;圆对应球;梯形对应棱台等。(4)找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等题型三利用“三段论”进行推理例3某校对文明班的评选设计了五个方面的多元评价指标,并通过经验公式样来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为.(填入中的某个字母)解析:因都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,,所以c增大1个单位会使得S的值增加最多注:从分式的性质中寻找S值的变化规律;此题的大前提是隐含的,需要经过思考才能得到1.下列说法正确的是()A.类比推理是由特殊到一般的推理B.演绎推理是特殊到一般的推理C.归纳推理是个别到一般的推理D.合情推理可以作为证明的步骤答案:C3.已知,考察下列式子:;;.我们可以归纳出,对也成立的类似不等式为答案:4.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为.[解析]解法的类比(特殊化)易得两个正方体重叠部分的体积为5.已知的三边长为,内切圆半径为(用),,发现正好是一个定值,,.【典型例题】例1:(1)迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。小王发现由8个质数组成的数列41,43,47,53,61,71,83,97的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数。小王欣喜万分,但小王按得出的通项公式,再往后写几个数发现它们不是质数。他写出不是质数的一个数是() A.1643 B.1679 C.1681 D.1697答案:C。解析:观察可知:累加可得:,验证可知1681符合此式,且41×41=1681。(2)下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a的性质|a|2=a2类比得到复数z的性质|z|2=z2;③方程有两个不同实数根的条件是可以类比得到:方程有两个不同复数根的条件是;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比错误的是()A.①③B.②④C.①④D.②③答案:D。解析:由复数的性质可知。(3)定义的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是()(1)(2)(3)(4)(A)(B)A.B.C.D.答案:B。例3:在△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆的半径,把上面的结论推广到空间,写出相类似的结论。答案:本题是“由平面向空间类比”。考虑到平面中的图形是一个直角三角形,所以在空间中我们可以选取有3个面两两垂直的四面体来考虑。取空间中有三条侧棱两两垂直的四面体A—BCD,且AB=a,AC=b,AD=c,则此三棱锥的外接球的半径是。例4:请你把不等式“若是正实数,则有”推广到一般情形,并证明你的结论。答案:推广的结论:若都是正数,证明:∵都是正数∴,………,,【课内练习】1.给定集合A、B,定义,若A={4,5,6},B={1,2,3},则集合中的所有元素之和为()A.15B.14C.27D.-14答案:A。解析:,1+2+3+4+5=15。2.观察式子:,…,则可归纳出式子为()A、B、C、D、答案:C。解析:用n=2代入选项判断。3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误答案:A。解析:直线平行于平面,并不平行于平面内所有直线。4.古希腊数学家把数1,3,6,10,15,21,……叫做三角数,它有一定的规律性,第30个三角数与第28个三角数的差为。答案:59。解析:记这一系列三角数构成数列,则由归纳猜测,两式相加得。或由,猜测。5.数列是正项等差数列,若,则数列也为等差数列.类比上述结论,写出正项等比数列,若=,则数列{}也为等比数列.答案:。6.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。答案:菱形对角线互相垂直且平分。7.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形,第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有_______________颗珠宝;则前件首饰所用珠宝总数为________________颗.(结果用表示)图1图1图2图3图4答案:66,。解析:利用归纳推理知。8.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O—LMN,如果用表示三个侧面面积,表示截面面积,那么你类比得到的结论是.答案:。9.已知椭圆C:具有性质:若M、N是椭圆C上关于原点对称的两点,点P是椭圆C上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值。试对双曲线写出具有类似特性的性质,并加以证明。答案:本题明确要求进行“性质类比”。类似的性质:若M、N是双曲线上关于原点对称的两点,点P是双曲线上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值。证明如下:设,其中设,由,得将代入得。10.观察下面由奇数组成的数阵,回答下列问题:(Ⅰ)求第六行的第一个数.(Ⅱ)求第20行的第一个数.(Ⅲ)求第20行的所有数的和.答案:(Ⅰ)第六行的第一个数为31 (Ⅱ)∵第行的最后一个数是,第行共有个数,且这些数构成一个等差数列,设第行的第一个数是∴ ∴ ∴第20行的第一个数为3(Ⅲ)第20行构成首项为381,公差为2的等差数列,且有20个数设第20行的所有数的和为则 【作业本】A组1.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为 ()A.25 B.6 C.7 D.8答案:C。解析:对于中,当n=6时,有所以第25项是7。OxABFy2.如图,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出”OxABFyA.B.C.D.答案:A。解析:猜想出“黄金双曲线”的离心率等于.事实上对直角△应用勾股定理,得,即有,注意到,,变形得.3.下面几种推理过程是演绎推理的是()A、两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B、由平面三角形的性质,推测空间四面体性质C、某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D、在数列中,,由此推出的通项公式答案:A。解析:B是类比推理,C、D是归纳推理。4.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理出一个结论,则这个结论是。答案:②③①。解析:②是大前提,③是小前提,①是结论。5.公比为的等比数列中,若是数列的前项积,则有也成等比数列,且公比为;类比上述结论,相应地在公差为的等差数列中,若是的前项和,则数列也成等差数列,且公差为。答案:,,;300。解析:采用解法类比。6.二十世纪六十年代,日本数学家角谷发现了一个奇怪现象:一个自然数,如果它是偶数就用2除它,如果是奇数,则将它乘以3后再加1,反复进行这样两种运算,必然会得到什么结果,试考查几个数并给出猜想。答案:取自然数6,按角谷的作法有:6÷2=3,3×3+1=10,3×5+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,其过程简记为6→3→10→5→16→8→4→2→1。取自然数7,则有7→22→11→34→17→52→26→13→40→20→10→……→1。取自然数100,则100→50→25→76→38→19→58→29→88→44→22→……→1。归纳猜想:这样反复运算,必然会得到1。7.圆的垂径定理有一个推论:平分弦(不是直径)的直径垂直于弦,这一性质能推广到椭圆吗?设AB是椭圆的任一弦,M是AB的中点,设OM与AB的斜率都存在,并设为KOM、KAB,则KOM与KAB之间有何关系?并证明你的结论。答案:KOM·KAB=。证明:设,则=0∵即KOM·KAB=,而,即KOM·KAB≠-1∴OM与AB不垂直,即不能推广到椭圆中。B组1.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文对应密文,例如,明文对应密文.当接收方收到密文时,则解密得到的明文为()A.B.C.D.答案:C。解析:本题考查阅读获取信息能力,实则为解方程组,解得,即解密得到的明文为。2.平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成块区域,有,则的表达式为()A、B、C、D、答案:B。解析:由,利用累加法,得。3.设,利用课本中推导等差数列前n项和公式的方法,可求得的值为()A、B、2C、3D、4答案:C。解析:。4.考察下列一组不等式:.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是___________________. 答案:(或为正整数)。解析:填以及是否注明字母的取值符号和关系,也行。5.如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正四边形“扩展”而来,……如此类推.设由正边形“扩展”而来的多边形的边数为,则;=.答案:42;。6.指出下面推理中的大前提和小前提。(1)5与2可以比较大小;(2)直线。答案:(1)大前提是实数可以比较大小,小前提是5与是实数。(2)大前提是平行于同一条直线的两直线互相平行,小前提是。7.已知函数,对任意的两个不相等的实数,都有成立,且,求的值。答案:∵当,由,从而可得:=8.已知数列{an}满足Sn+an=2n+1,(1)写出a1,a2,a3,并推测an的表达式;(2)证明所得的结论。答案:(1)a1=,a2=,a3=,猜测an=2-(2)①由(1)已得当n=1时,命题成立;②假设n=k时,命题成立,即ak=2-,当n=k+1时,a1+a2+……+ak+ak+1+ak+1=2(k+1)+1,且a1+a2+……+ak=2k+1-ak∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,∴2ak+1=2+2-,ak+1=2-,即当n=k+1时,命题成立.根据①②得n∈N+,an=2-都成立一、填空题1.如下图,对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:仿此,52的“分裂”中最大的数是___________,若的“分裂”中最小的数是211,则的值为___________.2.下面给出三个类比推理命题(其中为有理数集,为实数集,为复数集);①类比推出②类比推出,若③类比推出其中类比结论正确的序号是_____________(写出所有正确结论的序号)3.已知,则中共有项.4.设(是两两不等的常数),则的值是______________.二、选择题5.“所有金属都能导电,铁是金属,所以铁能导电,”此推理类型属于A.演绎推理B.类比推理C.合情推理D.归纳推理6.用三段论推理命题:“任何实数的平方大于0,因为a是实数,所以>0”,你认为这个推理()A.大前题错误B.小前题错误C.推理形式错误D.是正确的7.已知扇形的弧长为,所在圆的半径为,类比三角形的面积公式:底高,可得扇形的面积公式为()A. B. C. D.不可类比8.下列给出的平面图形中,与空间的平行六面体作为类比对象较为合适的是()A.三角形 B.梯形 C.平行四边形 D.矩形9.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是()A.25 B.66 C.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桩基础施工合同
- 地役权合同范本
- 树苗购销合同
- 2024年度融资租赁合同的租金支付与还款计划3篇
- 2024年度茶叶购销合同
- 农村土地承包租赁简单合同范本
- 2024电子商务平台技术开发与维护合同
- 2024年二手房买卖中介垫资费用管理合同3篇
- 商务英语中合同的翻译
- 全新精美劳动合同书版本完整版范文
- 胃肠动力治疗仪使用
- 西安交通大学《法理学》2023-2024学年期末试卷
- 食品生产设备安装应急响应预案
- 2024年度亚马逊FBA货物海运合同
- 综合测试06散文阅读(多文本)-备战2025年高考语文一轮复习考点帮(新高考)(教师版)
- 【初中数学】认识方程课件++2024-2025学年北师大版七年级数学上册
- 风湿免疫性疾病-2
- 2024-2025学年高三上学期期中家长会 课件
- 【课件】金属资源的利用和保护课件九年级化学人教版(2024)下册
- 完整2024年国有企业管理人员处分条例专题课件
- 六年级上册数学课件-6.1 分数混合运算 |西师大版 (共15张PPT)
评论
0/150
提交评论