纤维混杂复合材料的断裂特性研究_第1页
纤维混杂复合材料的断裂特性研究_第2页
纤维混杂复合材料的断裂特性研究_第3页
纤维混杂复合材料的断裂特性研究_第4页
纤维混杂复合材料的断裂特性研究_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

纤维混杂复合材料的断裂特性研究

1最优混杂纤维复合材料的制备混合纤维建筑材料是指由两种或两种以上的纤维增强一个或多个基数的材料。混杂得当,可以以一种纤维的优点来弥补另一种纤维的缺点,相互取长补短,以获取满足要求的综合性能。例如,在炭纤维复合材料中加入有机纤维或玻璃纤维构成混杂复合材料,以提高其断裂韧性;在有机纤维复合材料中加入玻璃纤维或炭纤维构成混杂复合材料,以提高其压缩强度或刚度等。强度较高的纤维,断裂应变一般较低。以炭纤维与玻璃纤维混杂的单向复合材料为例,炭纤维的强度较高,断裂应变较低,在沿纤维方向拉伸时,炭纤维首先断裂。若玻璃纤维含量较低,在炭纤维断裂的同时,玻璃纤维也将全部断裂;而玻璃纤维含量较高,在炭纤维断裂后,玻璃纤维仍有承载能力,载荷还可增加到一定值后,玻璃纤维才断裂。此时复合材料发生二次断裂,这在一个承力结构中一般是不能允许的。两种纤维混杂时,如何选取混杂比才能使结构不发生二次断裂,这就需要确定不发生二次断裂的临界混杂比。所谓最优混杂纤维复合材料是针对特定性能指标而定的,如强度、刚度或韧性等。对强度发挥为最优的混杂,对刚度或韧性不一定就是最优,反之亦然。文中将讨论充分发挥复合材料拉伸强度、同时提高刚度或压缩强度的最优混杂问题。这种混杂方案适用于工程结构中的受拉构件。2混合体的断裂分析考虑由两种纤维进行层间混杂制成的单向复合材料板条,宽度为单位1。设纤维层1和纤维层2的厚度分别为h1和h2,基体总厚度为hm。沿板条纤维方向受单向拉伸,拉伸载荷为F。则由复合定律得其平衡方程为σ1h1+σ2h2+σmhm=F(1)式中σ1、σ2和σm分别为纤维层1、2和基体所受拉应力。若该板条在力F作用下的应变为ε,则有σ1=E1ε‚σ2=E2ε‚σm=Emε(2)式中E1、E2和Em分别为纤维层1、2和基体的拉伸模量。将式(2)代入式(1),得ε=FE1h1+E2h2+Emhm(3)将式(3)代入式(2),得各纤维层的应力为{σ1=E1FE1h1+E2h2+Emhmσ2=E2FE1h1+E2h2+Emhm(4)设定纤维层1、2和基体的断裂应变分别为ε1b、ε2b和εmb,且规定满足:ε1b<ε2b<εmb则当拉伸载荷F增加到Fb时,纤维层1首先断裂,即当F=Fb时,ε1=ε1b、σ1=σ1b。σ1b为纤维层1的拉伸强度。由式(4)的第一式,得对应于纤维层1断裂时的平衡方程为E1h1+E2h2+Emhm=E1σ1bFb(5)纤维层1断裂后,拉伸载荷Fb由剩下的纤维层2和基体承担。此时混杂纤维复合材料板条的平衡方程为σ2h2+σmhm=Fb(6)若在Fb作用下,纤维层2也正好达到断裂状态,即ε2=ε2b、σ2=σ2b。这样的混杂复合材料板条将不会发生二次断裂现象。则由式(4)的第二式,得E2h2+Emhm=E2σ2bFb(7)基体总厚度hm与纤维的体积含量有关。假定纤维的总体积含量为Vf(基体的含量为Vm=1-Vf),即Vf=h1+h2h1+h2+hm则hm=λ(h1+h2)(8)式中λ=(1-Vf)/Vf。将式(8)代入式(5)和式(7),得{(E1+λEm)h1+(E2+λEm)h2=E1σ1bFbλEmh1+(E2+λEm)h2=E2σ2bFb(9)若定义纤维层1占总纤维的体积含量V1=h1h1+h2为两种纤维复合材料的混杂比,则由式(9)可得不发生二次断裂的两种纤维复合材料的临界混杂比为V*1=h1h1+h2=E1E2σ2b-E22σ1b+λEm(E1σ2b-E2σ1b)E1E2(σ1b+σ2b)-E22σ1b(10)3拉伸强度b纤维层混杂纤维复合材料的断裂可分为3种情况:a.纤维层1断裂后,构件仍有承载能力,当载荷增加到一定值后,纤维层2才断裂,即构件发生了二次断裂。这种情况一般发生在纤维层1的体积含量较低时,即当V1<V*1时,有混杂纤维复合材料的拉伸强度为σΗ=σ2bh2+σ2bE2Emhmh1+h2+hm=σ2bh2(1+λ)(h1+h2)+VmEmE2σ2b=[1-V11+λ+VmEmE2]σ2b=[(1-V1)Vf+VmEmE2]σ2b(11)b.纤维层1和纤维层2同时达到其各自的拉伸强度而断裂。这就是上节所讨论的情况,即当V1=V*1时,有混杂纤维复合材料的拉伸强度为σΗ=Fbh1+h2+hm(12)由式(9)得Fb=h11E1(E1σ1b-E2σ2b)(13)将式(8)和式(13)代入式(12),得σΗ=V*1VfE1σ1bσ2bE1σ2b-E2σ1b(14)c.纤维层1断裂后,构件已无继续承载的能力而发生一次断裂。这种情况一般发生在纤维层1的体积含量较高时,即当V1>V*1时,有混杂纤维复合材料的拉伸强度为σΗ=σ1bh1+σ1bE1E2h2+σ1bE1Emhmh1+h2+hm=V11+λσ1b+V21+λσ1bE1E2+Vmσ1bE1Em=[V1Vf+(1-V1)VfE2E1+VmEmE1]σ1b(15)由式(11)可见,当V1<V*1时,混杂纤维复合材料的拉伸强度随着V1的减小而增大;由式(15)可见,当V1>V*1时,混杂纤维复合材料的拉伸强度随着V1的增大而增大。由此可见,当V1=V*1时,混杂纤维复合材料的拉伸强度最小。4混合材料的拉伸模量和压缩强度对混杂纤维复合材料受拉构件,发生二次断裂一般是不允许的。这就给混杂比的选取提出了在任何情况下都必须满足的约束条件,即必须有V1≥V*1。则由式(10)得V1≥E1E2σ2b-E22σ1b+λEm(E1σ2b-E2σ1b)E1E2(σ1b+σ2b)-E22σ1b(16)a.对混杂纤维复合材料受拉构件,往往提出刚度要求,即要求其拉伸模量不小于E0。则有EΗ=Vf[V1E1+(1-V1)E2]+(1-Vf)Em≥E0(17)由式(17),得V1≥E0-VfE2-(1-Vf)EmVf(E1-E2)(18)式(17)中的EH是根据复合定律而得到的。在这种情况下,最优混杂比的选取必须同时满足式(16)和式(18)。b.如果要求混杂纤维复合材料的压缩强度不小于σ0,则有σΗc=[V1Vf+(1-V1)VfE2cE1c+VmEmcE1c]σ1bc≥σ0(19)式中σ1bc为纤维层1的压缩强度;E1c、E2c和Emc分别为纤维层1、纤维层2和基体的压缩模量。式(19)给出的混杂纤维复合材料压缩强度是根据复合定律并假定纤维层1的压缩断裂应变最小而得,即纤维层1最先被压坏。由式(19)得V1≥E1cσ0-(VfE2c-VmEmc)σ1bcVf(E1c-E2c)σ1bc(20)在这种情况下,最优混杂比的选取必须同时满足式(16)和式(20)。5拉伸模量的确定炭纤维的拉伸强度和拉伸模量都较高,但断裂应变和断裂韧性较低。玻璃纤维的拉伸强度和拉伸模量都较低,但断裂应变和断裂韧性较高。为获取具有一定刚度和韧性的承拉复合材料构件,可考虑炭纤维和玻璃纤维的混杂。设炭纤维的拉伸强度σ1b=5GPa,拉伸模量E1=270GPa;玻璃纤维的拉伸强度σ2b=3GPa,拉伸模量E2=85GPa;基体环氧树脂的拉伸模量Em=3.5GPa。假定纤维的总体积含量Vf=0.6,将已知数据代入式(10),得不发生二次断裂的炭纤维与玻璃纤维混杂复合材料的临界混杂比为V*1=0.228。在此基础上,若要求混杂纤维复合材料的拉伸模量不小于Eo=100GPa,将有关数据代入式(18),得V1≥0.429,即炭纤维在总纤维的最低含量应不小于0.429。如果要求Eo=70GPa,则由式(18)得V1≥0.159,即炭纤维的最低含量不小于0.159即可。但为了不发生二次断裂,应取炭纤维的含量不小于0.228。6掺杂纤维复合材料的制备方法以复合定律为基础,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论