氢能平准化成本分析-16正式版_第1页
氢能平准化成本分析-16正式版_第2页
氢能平准化成本分析-16正式版_第3页
氢能平准化成本分析-16正式版_第4页
氢能平准化成本分析-16正式版_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

JUNE 2021

LAZARD’SLEVELIZEDCOSTOFHYDROGENANALYSIS

LAZARD’S LEVELIZED COST OF HYDROGEN ANALYSIS

Lazard’sLevelizedCostofHydrogenAnalysis—ExecutiveSummary

Overviewof

Analysis

OverviewofHydrogenProductionandApplications

CostAnalysis

LazardhasundertakenananalysisoftheLevelizedCostofHydrogen(“LCOH”)inanefforttoprovidegreaterclaritytoIndustryparticipantsonthepotentiallydisruptiveroleofhydrogenacrossavarietyofeconomicsectors.OurLCOHbuildsupon,andrelatesto,ourannualLevelizedCostofEnergy(“LCOE”)andLevelizedCostofStorage(“LCOS”)studies.Giventhisbreadth,wehavedecidedtofocustheanalysisonthefollowingkeytopics:

Anoverviewofthevariousmethodsforproducinghydrogenandvariousapplicationsofhydrogenacrosseconomicsectors

AdiscussionofFAQspertainingtohydrogengivenitsrelativelynascentpresenceacrossmosteconomicsectors

Alevelizedcostanalysisofgreenhydrogen(i.e.,hydrogenproducedusingwaterandrenewableenergy)basedontwoprimaryelectrolyzertechnologiesandanillustrativesetofelectrolyzercapacities

OuranalysisintentionallyfocusesonakeysubsetofassumptionsforcalculatingtheLCOH.Theadditionalfactorslistedbelowhavebeenintentionallyexcludedbutwouldalsohaveanimpactonthedeliveredcostofgreenhydrogen:

Conversiontootherstatesand/oradditionalpurificationfortheproductionofotherchemicals(i.e.,liquefaction,productionofammonia,methanol,etc.)

Compressionand/orstoragecosts,whetheron-oroff-site

Transmission,distributionandtransportationcosts(e.g.,pipeline,truck,ship,etc.)

Additionalinvestmentand/orretrofittingofend-useinfrastructure/equipmentfortheuseofhydrogenvs.theoriginalfuelsource

Hydrogeniscurrentlyproducedprimarilyfromfossilfuelsusingsteam-methanereformingandmethanesplittingprocesses(i.e.,“gray”hydrogen)

Avarietyofadditionalprocessesareavailabletoproducehydrogenfromelectricityandwater,whichareatvaryingdegreesofdevelopmentandcommercialviability

Givenitsversatilityasanenergycarrier,hydrogenhasthepotentialtobeusedacrossindustrialprocesses,powergenerationandtransportation,creatingapotentialpathfordecarbonizingenergy-intensiveindustrieswherecurrenttechnologies/alternativesarenotpresentlyviable

Greenhydrogeniscurrentlymoreexpensivethantheconventionalfuelsorhydrogenitwoulddisplace—theintentofthiscostanalysisistobenchmarktheLCOHofgreenhydrogenona$/kgbasissuchthatreadersmayconverttotheequivalentcostofagivenenduseofinterest(e.g.,asfeedstockforammoniaproduction,displacingnaturalgasinapowerplant,etc.)

Applicationswhichrequireminimaladditionalsteps(e.g.,conversion,storage,transportation,etc.)toreachtheenduserwillachievecostcompetitivenesssoonerthanthosethatdonot

Thisdynamicisfurtheramplifiedtotheextentthatendusesrequireretrofittingequipmenttoutilizehydrogenvs.theconventionalalternatives

Electricityrepresents~30%–60%ofthecosttoproducehydrogenfromelectrolyzerswithacapacityof20+MW—theLCOHisthereforehighlydependentonthecostoftheavailablesourcesofelectricity

Thenext-mostsignificantdriveroftheLCOHisthecostoftheelectrolyzer,whichisexpectedtodecreaseasaresultofrapidgrowthinindustryscaleandtechnologicaladvancement

Inassessingthecostprofileofgreenhydrogen,therelativecostpositionofgreenhydrogenascomparedtoconventionalfuelsorgrayhydrogenisanobviouscorecomponentoftheanalysisasistherelevantusecasebeingcompared

Acostofcarbon,oravoidanceofsuchcosts,isnotincludedintheLCOHnoraregovernmentsupportmechanisms—bothofthesefactorscouldbeimpactfultoanycost/projectanalysis

Note:

Lazard’sLCOHanalysisisconductedwithsupportfromRolandBerger.Thisanalysisisillustrativeinnatureandshouldnotbeconsideredasabenchmarkforanygivenproject.

1

Copyright2021Lazard

Thisanalysisshouldnotbeconsideredasabasisfromwhichtomakeinvestment,regulatoryorstrategicdecisionsorotherwise.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

I OverviewofHydrogenProductionandApplications

I OVERVIEW OF HYDROGEN PRODUCTION AND APPLICATIONS

LeadingProcessesforHydrogenProduction

Hydrogenhashistoricallybeenproducedprimarilythroughtheuseoffossilfuels;however,improvementsinthecosteffectivenessofrenewableenergyandelectrolyzertechnologycreateapathforeconomicallyviablegreenhydrogen

ByproductsProcessFeedstock

FossilFuels

NuclearEnergy

Water(H2O)

Water(H2O)

Thermochemical

High-Temperature

Steam-Methane

MethaneSplitting

Reforming

Splitting

SteamElectrolysis

CarbonDioxide

(CO2)Capture

andStorage

CarbonDioxide

Carbon

Oxygen(O2)

Oxygen(O2)

(CO2)

Monoxide(CO)

GrayHydrogen

BlueHydrogen

Yellow

Hydrogen

Notes

Notes

Renewable

Energy

Water(H2O)

Low-Temperature

Electrolysis

Oxygen(O2)

GreenHydrogen

Notes

Steamreforminginvolvesinjectingsteamintonaturalgas,producing“gray”hydrogenandCO2

SubsequentCO2captureandstorageproduces“blue”hydrogen

Methanesplittingutilizesahigh-temperatureplasmatosplitnaturalgasinto“blue”hydrogenandcarbonmonoxide

Thermochemicalsplittingutilizesahigh-temperatureprocesstoproduce“yellow”hydrogenandoxygen

High-temperaturesteamelectrolysisutilizesanelectriccurrentandhigh-temperaturesteamtoproduce“yellow”hydrogenandoxygen

Low-temperatureelectrolysisisanelectrochemicalprocessinwhichacurrentisappliedtowatertoproducegreenhydrogenandoxygen

Alkalineandpolymerelectrolytemembrane(“PEM”)electrolyzersarecurrentlytheprimarytechnologiesutilizedforlow-

temperatureelectrolysis

2

Copyright2021Lazard Source:WorldNuclearAssociation(2020),HydrogenCouncil,InternationalEnergyAgency,FuelCellandHydrogenEnergyAssociationandNationalRenewableEnergyLaboratory.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

I OVERVIEW OF HYDROGEN PRODUCTION AND APPLICATIONS

HydrogenApplicationsinToday’sEconomy

Theadaptabilityofhydrogentosupplementorreplacegaseousandliquidfossilfuelscreatesnumerousopportunitiestoaddresstheneedsofavarietyofeconomicsectors

Form

Sector

Power

GasDistribution/DistrictHeating

GAS&

OilandGasProduction

FUELCELL

Heavy/SpecialtyIndustry

IndustrialChemicalProduction

Heavy-Duty/IndustrialVehicles

H2

GAS&

Cargoand/orPassengerRail

FUELCELL

MaritimeShippingand/orTravel

Aviation

GAS&LIQUID/

Light-DutyVehicles

SYNTHETICFUEL

Other

Notes

Gaseoushydrogenandammoniacanbeutilizedasfuelsubstitutesinpowergeneration,gasdistribution,andcombinedheatandpower(“CHP”)applications

Hydrogencouldalsoprovideameansforprovidingseasonalstorageforthepowergrid

Hydrogenisusedinrefiningandcanbeintegratedintotheproductionprocessesforcarbon-intensivematerialssuchasaluminum,iron,steelandcement

Theproductionofammonia,methanolandotherindustrialchemicalsrequireshydrogenasaprimaryingredient

Gaseoushydrogencanbecombusteddirectly,orwhenpairedwithfuelcells,canfunctionasasubstituteforconventionalfuels(e.g.,naturalgas,fueloil,etc.)foruseincommercialandindustrialvehicles(e.g.,forklifts,etc.)

Hydrogenfuelcellelectricvehicles(“HFEVs”)competefavorablywithbatteryelectricvehicles(“BEVs”)inindustrialapplicationsthatrequirehighuptime,quickrefuelingandtheabilitytomoveheavyloads

Ammoniaandmethanolareviablesubstitutefuelsforvariousheavy-dutyapplications(e.g.,maritime),wheretheenergydensityandeaseofhandlingofthesefuelsiscompetitivewithconventionalalternatives

Hydrogencanbecombinedwithcarbondioxidetoproducelow-ornet-zeroemissionsaviationandsyntheticfuels,dependingontheinitialsourceofcarbondioxide

HFEVsareaviablealternativetoBEVsforlarger/heavierpassengervehicles(e.g.,sportutilityvehicles),wheretheadditionalcarryingcapacityoffueloffsetstherelativelyheaviervehicleplatform

HFEVsmaintainanadvantageoverBEVstotheextenttheweight-to-powerdensityprofileoflargerpassengervehiclesoffsetsthelowerefficiencyofthegas-to-electricity

conversionprocess

3

Copyright2021Lazard Source:HydrogenCouncil,InternationalEnergyAgency,FuelCellandHydrogenEnergyAssociationandNationalRenewableEnergyLaboratory.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

II FrequentlyAskedQuestionsPertainingtoHydrogen

II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN

HydrogenFAQs—MarketDrivers

LazardhasundertakenastudyoftheLCOHtoanalyzethecurrentunsubsidizedcosttoproducegreenhydrogenthroughelectrolysis.Givenhydrogen’sversatilityasacleanfuelsource,itisviewedasapotentiallydisruptivesolutionfordecarbonizingavarietyofeconomicsectors

WhatIsGreenHydrogenandHowCanItSupporttheDecarbonizationofEconomicActivity?

HowIsGreenHydrogenProduced?

Greenhydrogenisproducedwhenrenewableenergyisusedtosplitwaterintoitscomponentpartsthroughelectrolysis

Theversatilityofgreenhydrogenasaliquidorgaseousfuel,combinedwithitssuitabilityforvariousmodesoftransport,makesitanaturalsubstituteforanumberofexistingfossilfuels(e.g.,naturalgas,gasoline,diesel,coalandoil)

Asaresultofitsversatility,greenhydrogenisapotentialsolutionforreducingcarbonemissionsintraditionally“hard-to-abate”sectorssuchastransportation/mobility,heating,oilrefining,ammoniaandmethanolproduction,andpowergeneration

Therearefourtypesofwaterelectrolysistechnologiesthatareusedtocreategreenhydrogen:

Alkalineelectrolysisisthemostdevelopedandcommercializedprocesstodate

PEMelectrolysisisthenext-mostmatureprocesswithgrowingcommercialization

PEMisadvantageousoveralkalinewithasmallerfootprint,abilitytoloadfollowduetolowerstartupandsystemresponsetimes,lowerminimumloadrequirementsandgreaterloadflexibility(i.e.,optimizeoutputbasedontheavailabilityofintermittentrenewableenergy)

Solidoxideandanionexchangemembrane(“AEM”)electrolysisprocessesarestillinpilot/developmentstages—theseprocessesarenotexpectedtobebroadlycommercializedbeforethemid2020s

Source:InternationalRenewableEnergyAgency,InternationalEnergyAgency,U.S.DepartmentofEnergy,BidenAdministration,EuropeanUnion,nationalgovernmentfilings,National

4

Copyright2021Lazard

RenewableEnergyLaboratoryandCaliforniaEnergyCommission.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor

otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN

HydrogenFAQs—End-UseApplications

Hydrogeniscurrentlyusedprimarilyinindustrialapplications,includingoilrefining,steelproduction,ammoniaandmethanolproduction,andfeedstockforothersmaller-scalechemicalprocesses

WhichSectorsCan

GreenhydrogenisbestpositionedtoreduceCO2emissionsintypically“hard-to-abate”sectorssuchascementproduction,

UtilizeGreen

centralizedenergysystems,steelproduction,transportationandmobility(e.g.,forklifts,maritimevessels,trucksandbuses),

HydrogentoReduce

andbuildingpowerandheatsystems

CO2Emissions?

Naturalgasutilitiesarelikelytobeearlyadoptersofgreenhydrogenasmethanation(i.e.,combininghydrogenwithCO2to

producemethane)becomescommerciallyviableandpipelineinfrastructureisupgradedtosupporthydrogenblends

WhatIsthe

Materialhandlingequipment(e.g.,forklifts)andindustrialusecases(e.g.,oilrefining,ammoniaandmethanolfeedstock)are

currentlyamongthemorewidelyadoptedusecasesforgreenhydrogen

“Integration

Near-term(asthedecadeprogresses),“massmarketacceptability”(i.e.,sales>1%ofthemarket)couldoccurfor

Readiness”ofVarious

applicationssuchasheavy-dutytrucking,citybuses,decarbonizationoffeedstockandhydrogenstorage,amongothers

UseCaseswith

RespecttoGreenH2?

Longer-term(i.e.,beyond2030),commerciallyviablegreenhydrogenapplicationsareexpectedtoexpandtoothermobility

segments(e.g.,drop-insyntheticfuels),steelproduction,blendingwithnaturalgasandheatingapplications

Potentialinfrastructureneedsforthewidespreadadoptionofgreenhydrogen:

Oncegreenhydrogenisproduced,itmustbestored,transportedandpotentiallyconverted,unlessconsumedon-site

Transportandstorage(e.g.,pressurization)aremeaningfulbarriersforgreenhydrogenbeingbroadlycostcompetitive

Mostexistingnaturalgasdistributioninfrastructurecannotaccommodatepureorevenlow-levelblending(i.e.,<20%)of

hydrogenwithnaturalgas

WhatInfrastructure

Refuelingstationsformobilityapplicationswillrequiresophisticatedstoragefacilitiesandeitherlocalordistributed

IsNeededtoSupport

production,withthelatternecessitatingtransmissioninfrastructurefromcentralproductionlocations

Adoption?

Certainexistinginfrastructurecanbeutilizedtosupportthewidespreadadoptionofgreenhydrogen

Injectionofhydrogenintoexistingindustrial(i.e.,welded)pipelineinfrastructureisacost-effectivemeansfortransportationanddistribution

Non-pipelinetransportation(e.g.,shipping,trucking,etc.)issubstantiallymoreexpensive,albeitfacilitateslonger-rangeandmoreflexibletransportation

Methanatedgreenhydrogen(i.e.,greenmethane)isfullycompatiblewithexistingnaturalgasdistributioninfrastructure

Source:Companyfilings,HydrogenCouncil,InternationalEnergyAgency,InternationalRenewableEnergyAgency,FuelCellandHydrogenEnergyAssociation,U.S.

5

Copyright2021Lazard

DepartmentofEnergyandNationalRenewableEnergyLaboratory.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor

otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN

HydrogenFAQs—IndustryLandscape

WhatIstheGreenHydrogenValueChainandWhoAretheKeyPlayers?

Thegreenhydrogenproductionvaluechaincanbedividedintofiveprimarysegments:

Processinputgeneration

Greenhydrogenproduction

Conversion,includingcompressionandstorage

Transportation,includingvesselsandpipeline

Reconversiontogaseoushydrogenasapplicable

Keyendusersinthevaluechainincludeindependentpowerproducers,electricandnaturalgasutilities,oilandgasmajors,electrolyzermanufacturers,theautomotivesector,infrastructureandtransportationproviders,andotherendusers

Theelectrolyzermanufacturerlandscapeissplitbetweenadvancedmanufacturersandsmallerplayerswhosetechnologiesarestillunderdevelopmentorinpilotstages

Downstreamvaluechainparticipantsincludeutilities,oilandgasmajors,transportandstorageprovidersincludingfuelcells,andvariousmunicipalities/governmentsandOEMsdrivingrefuelingstationinvestment

Source:Companyfilings,U.S.DepartmentofEnergy,HydrogenCouncil,InternationalEnergyAgency,FuelCellandHydrogenEnergyAssociationandNational

6

Copyright2021Lazard

RenewableEnergyLaboratory.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor

otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

II FREQUENTLY ASKED QUESTIONS PERTAINING TO HYDROGEN

HydrogenFAQs—CostEffectiveness

Greenhydrogenisnotyetbroadlycostcompetitiveascomparedtotheconventionalfuelsitwouldreplace

Thiscostdisparityshoulddiminishasthecostofrenewableenergycontinuestodeclineand/orgreenhydrogenprojects

WhatIstheCostof

aredevelopedinsuchawayastoconsumerenewableenergythatwouldotherwisebecurtailed

GreenHydrogen

RelativetoOther

Transportation,conversion,andinfrastructureandend-useupgradecostswillcontinuetobemeaningfuldriversofthecost

Fuels?

structureofgreenhydrogenvs.alternativefuels

Otherformsofhydrogen(e.g.,bluehydrogen)arecurrentlylessexpensivethangreenhydrogen,particularlyintheabsence

ofcarbonpricingorothermechanismsusedtoaccountforemissions

Thecostcompetitivenessofgreenhydrogenshouldincreaseastheindustrygrows,drivingimprovementsintheunderlying

electrolyzertechnologyinconjunctionwithcostimprovementsresultingfrommanufacturingscaleandefficiency

WhatWillBetheKey

Electrolyzerstackcostscurrentlycomprise~33%–45%ofthetotalcapitalcostswhilethecostofelectricityrepresents

DriversofGreen

~30%–60%ofthelevelizedcostofgreenhydrogen

HydrogenCost

Policyaction(e.g.,carbonpricesorincentives)shouldalsoinfluencetherelativecostofgreenhydrogenascomparedto

Competitiveness?

fossilfuelalternatives

Thefuturecostcompetitivenessofgreenhydrogenwillalsodependontheinterplaybetweenenduseandproximityof

production,whichinturninformsthetransportationandstoragecostsassociatedwithagivenapplication

Giventhatthecostofelectricityisakeydriverofthecostofgreenhydrogen,theavailabilityoflow-costrenewableenergyiscritical—theoptimallocationsforgreenhydrogenproductioninthisregardwillbeinareasthat:

HowWillRenewableEnergyProductionandLocationImpactCosts?

Havethecapacitytoproducegreenhydrogenatscaleandwithabundantlow-orzero-cost(i.e.,curtailed)renewableenergyresources

Haveinherentdemandforlocalgreenhydrogen(e.g.,drivenbydecarbonizationregulations/incentives)and/orareequippedwithefficienttransportationinfrastructure,therebyavoidinghightransportationandstoragecosts

Source:Companyfilings,HydrogenCouncil,InternationalEnergyAgency,InternationalRenewableEnergyAgency,FuelCellandHydrogenEnergyAssociation,

7

Copyright2021Lazard

CaliforniaEnergyCommissionandNationalRenewableEnergyLaboratory.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialor

otheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

III IllustrativeGreenHydrogenCostAnalysis

III ILLUSTRATIVE GREEN HYDROGEN COST ANALYSIS

Lazard’sLevelizedCostofHydrogen—Methodology

Lazard’sLevelizedCostofHydrogenanalysisisillustrativeinnatureandemploysasimplifiedmethodology.Asaresult,anumberofassumptionsmustbemadetostandardizethevariousparametersofanotherwisecomplexanalysis,including:

TheLCOHiscalculated“asdelivered”byanAlkalineorPEMelectrolyzer—noadditionalconversion,storageortransportationcostsareconsideredinthisanalysis

Theelectricityutilizedasaninputforelectrolysisisproducedbyarenewableenergyfacility,therebymakingthehydrogen“green”—thepotentialintermittencyoftherenewableenergyresourceiscapturedintheutilizationassumptionwhichissensitizedinthesubsequentpages

Theanalysishorizonis15years.Inputcostsaregrownbyafixedescalationrateoverthisterm—seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”foradditionaldetail

Anavailabilityfactorof98%isassumedacrosstechnologiesandsystemcapacities—adjustmentstoutilizationratesdonotimpacttheoperationalcharacteristics,andassociatedmaintenancecosts,ofaplantbeyondtheconsumptionofinputsandresultinghydrogenproduced

Stackreplacementoccursatanintervaldeterminedbyplantavailability,utilizationandstacklifetime(measuredinhours)—stackreplacementcostsareidenticaltotheoriginalcostofthestack

Thisanalysiscalculatestherevenuerequirement,ona$/kgbasis,neededtoachievea12%levered,after-taxreturntotheprojectinvestor.Seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”foradditionaldetailsonassumedcapitalstructure

Otherfactorswouldalsohaveapotentiallysignificanteffectontheresultscontainedherein,buthavenotbeenexaminedinthescopeofthisanalysis.Theseadditionalfactors,amongothers,couldinclude:developmentcostsoftheelectrolyzerandassociatedrenewableenergygenerationfacility;conversion,storageortransportationcostsofthehydrogenonceproduced;additionalcoststoproducealternatefuels(e.g.,ammonia);coststoupgradeexistinginfrastructuretofacilitatethetransportationofhydrogen(e.g.,naturalgasdistributionpipelines);electricalgridupgrades;costsassociatedwithmodifyingend-useinfrastructure/equipmenttousehydrogenasafuelsource;potentialvalueassociatedwithcarbon-freefuelproduction(e.g.,carboncredits,incentives,etc.).Thisanalysisalsodoesnotaddresspotentialenvironmentalandsocialexternalities,including,forexample,waterconsumptionandthesocietalconsequencesofdisplacingthevariousconventionalfuelswithhydrogenthataredifficulttomeasure

8

Copyright2021Lazard

Note:Seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”fordetailedmodelingassumptionsforallprojecttypesevaluatedinthisanalysis.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisnotintendedtobe,andshouldnotbeconstruedas,financialorotheradvice.Nopartofthismaterialmaybecopied,photocopiedorduplicatedinanyformbyanymeansorredistributedwithoutthepriorconsentofLazard.

III ILLUSTRATIVE GREEN HYDROGEN COST ANALYSIS

CurrentLevelizedCostofHydrogenProduction(1)—1MWElectrolyzer

Greenhydrogenisarelativelyexpensivefuelascomparedtoconventionalalternatives;however,theincreasingpenetrationofrenewableenergyinpowergeneration,technologicalandcostimprovementsinelectrolyzertechnology,andcarbonpricingcollectivelyhavethepotentialtosubstantivelyalterthisdynamic

ThisanalysisevaluatesthesensitivityoftheLCOH,in$/kg,tochangesincapex,costofelectricityandelectrolyzerutilization

Wehavecompiledmarketdatafor“low-”,“medium-”and“high-”efficiencyelectrolyzersacrosscapacitiesof1,20and100MW

Thesensitivitiesbelowandonsubsequentpagesevaluatethe“medium-”efficiencyunitsacrossscaleandtechnology

SensitivitytoElectricityCostandElectrolyzerCapex(2)

($/MWh)EnergyCost

Alkaline(1MW)

ElectrolyzerCapex($/kW)

$/kg

$1,180

$1,310

$1,460

$1,610

$1,770

$10

$1.33

$1.43

$1.54

$1.65

$1.77

$20

$1.60

$1.70

$1.81

$1.92

$2.04

$30

$1.87

$1.97

$2.08

$2.19

$2.31

$40

$2.14

$2.24

$2.35

$2.46

$2.57

$50

$2.41

$2.51

$2.62

$2.73

$2.84

($/MWh)EnergyCost

PEM(1MW)

ElectrolyzerCapex($/kW)

$/kg

$1,420

$1,580

$1,760

$1,940

$2,130

$10

$1.84

$1.97

$2.12

$2.27

$2.43

$20

$2.15

$2.28

$2.43

$2.58

$2.74

$30

$2.45

$2.59

$2.74

$2.89

$3.05

$40

$2.76

$2.90

$3.05

$3.20

$3.36

$50

$3.07

$3.21

$3.36

$3.51

$3.67

$/kg

EnergyCost($/MWh)

$10

$20

$40

$30

$50

Copyright2021Lazard

SensitivitytoElectricityCostandUtilizationRate(3)

Alkaline(1MW)

PEM(1MW)

ElectrolyzerUtilization

ElectrolyzerUtilization

100%

90%

80%

70%

60%

$/kg

100%

90%

80%

70%

60%

$1.54

$1.61

$1.76

$1.93

$2.16

EnergyCost($/MWh)

$10

$2.12

$2.25

$2.39

$2.65

$2.98

$1.81

$1.88

$2.03

$2.20

$2.43

$20

$2.43

$2.56

$2.70

$2.96

$3.29

$2.35

$2.42

$2.57

$2.74

$2.97

$40

$3.05

$3.18

$3.32

$3.58

$3.90

$2.08

$2.15

$2.30

$2.47

$2.70

$30

$2.74

$2.87

$3.01

$3.27

$3.59

$2.62

$2.69

$2.84

$3.01

$3.24

$50

$3.36

$3.49

$3.63

$3.89

$4.21

Source:FuelCellandHydrogenEnergyAssociation,NationalRenewableEnergyLaboratory,PacificNorthwestNationalLaboratory,andLazardandRolandBergerestimates.

Note:

Seepagetitled,“LevelizedCostofHydrogen—KeyAssumptions”fordetailedmodelingassumptionsforallprojecttypesevaluatedinthisanalysis.

9

(1)

TheLCOHanalysisisbasedondatacollectedfromindustryandadiscountedcashflowanalysiswhichcalculatestherevenuerequirementtoachievealeveredequityreturnof12%.

(2)

Sensitivityisbasedona98%electrolyzerutilizationrateforbothtechnologies.

(3)

Sensitivityisbasedonthecapexassumptionformedium-efficiencyelectrolyzersforeachtechnology.

ThisstudyhasbeenpreparedbyLazardforgeneralinformationalpurposesonly,anditisno

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论