高考难点放缩法_第1页
高考难点放缩法_第2页
高考难点放缩法_第3页
高考难点放缩法_第4页
高考难点放缩法_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE2高考专题—放缩法一.先求和后放缩例1.正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.(1)求证:;(2)求证:解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得∴所以,,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{an}中,,前n项的和为An,且A7,A9,A8成等差数列.设,数列{bn}前n项的和为Bn,证明:Bn<.解:(1)当n为奇数时,an≥a,于是,.当n为偶数时,a-1≥1,且an≥a2,于是.(2)∵,,,∴公比.∴..∴.3.放缩后为差比数列,再求和例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m时Pi>Pj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列的逆序数为an,如排列21的逆序数,排列321的逆序数.(1)求a4、a5,并写出an的表达式;(2)令,证明,n=1,2,….解(1)由已知得,.(2)因为,所以.又因为,所以=.综上,.注:常用放缩的结论:(1)(2).练习1已知数列{a}满足:a=1且.求数列{a}的通项公式;设mN,mn2,证明(a+)(m-n+1)分析:这是06年河北省高中数学竞赛的一道解答题(1)大家都知道数列的递推公式往往比通项公式还重要.这就引导我们要重视数列的递推公式由已知有a=,学生对形如,A,B是常数)形式的一次线性递推关系的数列通过构造新数列求通项公式的方法已不陌生,本题中的递推关系显然不是此类型.那么我们能否也可通过待定系数法构造新数列呢?不妨设即与比较系数得c=1.即又,故{}是首项为公比为的等比数列,故这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.即证,当m=n时显然成立。易验证当且仅当m=n=2时,等号成立。设下面先研究其单调性。当>n时,即数列{}是递减数列.因为n2,故只须证即证。事实上,故上不等式成立。综上,原不等式成立。2设数列{}满足求{}的通项公式;若求证:数列{}的前n项和分析:(1)此时我们不妨设即与已知条件式比较系数得又是首项为2,公比为2的等比数列。.由(1)知.当时,当n=1时,=1也适合上式,所以,故方法一:,(这步难度较大,也较关键,后一式缩至常数不易想到.必须要有执果索因的分析才可推测出.).方法二:在数列中,简单尝试的方法也相当重要.很多学生做此题时想用裂项相消法但是发现此种处理达不到目的.但是当n3时,我们看:易验证当n=1,2时.综上下面我们再举一个数列中利用放缩法证明不等式的问题.3已知正项数列{}满足判断数列{}的单调性;求证:分析:(1),即故数列{}为递增数列.(2)不妨先证再证:原解答中放缩技巧太强,下面给出另一种证法.当时,.易验证当n=1时,上式也成立.综上,故有成立.4求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。5已知求证:证明:6已知数列{an}的前n项和Sn满足:Sn=2an+(-1)n,n≥1.(Ⅰ)写出求数列{an}的前3项a1,a2,a3;(Ⅱ)求数列{an}的通项公式;(Ⅲ)证明:对任意的整数m>4,有.解;数列{}的通项公式为:.⑶由已知得:.故(m>4).用放缩法证明不等式所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。一.“添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。例1.设a,b为不相等的两正数,且a3-b3=a2-b2,求证。证明:由题设得a2+ab+b2=a+b,于是(a+b)2>a2+ab+b2=a+b,又a+b>0,得a+b>1,又ab<(a+b)2,而(a+b)2=a+b+ab<a+b+(a+b)2,即(a+b)2<a+b,所以a+b<,故有1<a+b<。例2.已知a、b、c不全为零,求证:证明:因为,同理,。所以二.分式放缩一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。例3.已知a、b、c为三角形的三边,求证:。证明:由于a、b、c为正数,所以,,,所以,又a,b,c为三角形的边,故b+c>a,则为真分数,则,同理,,故.综合得。三.裂项放缩若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4.已知n∈N*,求。证明:因为,则,证毕。例5.已知且,求证:对所有正整数n都成立。证明:因为,所以,又,所以,综合知结论成立。四.公式放缩利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。例6.已知函数,证明:对于且都有。证明:由题意知又因为且,所以只须证,又因为所以。例7.已知,求证:当时。证明:证毕。五.换元放缩对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。例8.已知,求证。证明:因为,所以可设,,所以则,即。例9.已知a,b,c为△ABC的三条边,且有,当且时,求证:。证明:由于,可设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论