回归分析简答题_第1页
回归分析简答题_第2页
回归分析简答题_第3页
回归分析简答题_第4页
回归分析简答题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

作多元线性回归分析时,自变量与因变量之间的影响关系一定是线性形式的吗?多元线性回归分析中的线性关系是指什么变量之间存在线性关系?答:作多元线性回归分析时,自变量与因变量之间的影响关系不一定是线性形式。当自变量与因变量是非线性关系时可以通过某种变量代换,将其变为线性关系,然后再做回归分析。多元线性回归分析的线性关系指的是随机变量间的关系,因变量y与回归系数βi间存在线性关系。多元线性回归的条件是:(1)各自变量间不存在多重共线性;(2)各自变量与残差独立;(3)各残差间相互独立并服从正态分布;(4)Y与每一自变量X有线性关系。回归分析的基本思想与步骤基本思想:所谓回归分析,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。步骤:1)确定回归方程中的解释变量和被解释变量。2)确定回归模型

根据函数拟合方式,通过观察散点图确定应通过哪种数学模型来描述回归线。如果被解释变量和解释变量之间存在线性关系,则应进行线性回归分析,建立线性回归模型;如果被解释变量和解释变量之间存在非线性关系,则应进行非线性回归分析,建立非线性回归模型。3)建立回归方程

根据收集到的样本数据以及前步所确定的回归模型,在一定的统计拟合准则下估计出模型中的各个参数,得到一个确定的回归方程。4)对回归方程进行各种检验

由于回归方程是在样本数据基础上得到的,回归方程是否真实地反映了事物总体间的统计关系,以及回归方程能否用于预测等都需要进行检验。5)利用回归方程进行预测多重共线性问题、不良后果、解决方法多重共线性是指线性回归模型中的自变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。常见的是近似的多重共线性关系,即存在不全为0的p个常数C1,C2,…,Cp使得C1Xi1+C2Xi2+…+CpXip≈0,i=1,2,…n不良后果:模型存在完全的多重共线性,则资料阵X的秩<p+1,从而无法得到回归参数的估计量。对于近似多重共线性情况,虽有r(X)=p+1,但|XTX|≈0,从而矩阵(XTX)-1的主对角线上的元素很大,使得估计的参数向量的协方差阵的对角线上的元素也很大,导致普通最小二乘参数估计量并非有效。检验方法:方差扩大因子(VIF)法和特征根判定法方差扩大因子表达式为:VIFi=1/(1-Ri2),其中Ri为自变量xi对其余自变量作回归分析的复相关系数。当VIFi很大时,表明自变量间存在多重共线性。解决方法:当发现自变量存在严重的多重共线性时,可以通过剔除一些不重要的自变量、增大样本容量、对回归系数做有偏估计(如采用岭回归法、主成分法、偏最小二乘法等)等方法来克服多重共线性。为什么要进行回归方程的显著性检验?答:对于任意给定的一组观测数据(xi1,xi2,...,xip;yi),(i=1,2,...,n),我们都可以建立回归方程。但实际问题很可能y与自变量x1,x2,...,xp之间根本不存在线性关系,这时建立起来的回归方程的效果一定很差,即回归值yi实际上不能拟合真实的值yi。即使整个回归方程的效果是显著的,在多元的情况下,是否每个变量都起着显著的作用呢?因此还需要对各个回归系数进行显著性检验,对于回归效果不显著的自变量,我们可以从回归方程中剔除,而只保留起重要作用的自变量,这样可以使回归方程更简练。统计性的依据是什么?给出一个回归方程如何做显著性检验?统计性的依据是方差分析。对于多元线性回归方程作显著性检验就是要看自变量x1,x2,...xp从整体上对随机变量y是否有明显的影响,即检验假设H0:β1=β2=...=βp=0H1:至少有某个βi≠0,1<=i<=p如果H0被接受,则表明y与x1,x2,...xp之间不存在线性关系,为了说明如何进行检验,我们首先要建立方差分析表。在进行显著性检验中,我们可以用F统计量来检验回归方程的显著性,也可以用P值法做检验。F统计量是:F=MSR/MSE=[SSR/p]/[SSE/(n-p-1)]当H0为真时,F~F(p,n-p-1)。给定显著性水平α,查F分布表得临界值F1-α(p,n-p-1),计算F的观测值,若F0<=F1-α(p,n-p-1),则接受H0,即认为在显著性水平α之下,认为y与x1,x2,...xp之间线性关系不显著。利用P值法做显著性检验十分方便,这里的P值是P(F>F0),定显著性水平α,若p<α,则拒绝H0,反之接受H0。回归系数的显著性检验型后,xi1对y的影响是否仍显著,若Fi1(2)≤FD,则剔除xi。(3)在第二步的基础上再将其余的m-2个自变量分别加入此模型中,拟合各个模型并计算偏F统计量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论