版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Matlab数字图像处理数学建模之Matlab图像处理/1、图像的读取和显示/2、图像的点运算/4、空间域图像增强/5、频率域图像增强/6、彩色图像处理/7、形态学图像处理/8、图像分割/9、特征提取内容安排/3、图像的几何变换数学建模之Matlab图像处理/1、图像的读取和显示一、图像的读取A=imread()
指定图像文件的完整路径和文件名。如果在work工作目录下只需提供文件名。FMT为图像文件的格式对应的标准扩展名。I_1=imread('D:\10.06.08nir\TTC10377.BMP');%读入图像二、图像的写入imwrite(A,)参数指定文件名。FMT为保存文件采用的格式。imwrite(I6,'nirdilatedisk2TTC10373.bmp');数学建模之Matlab图像处理/1、图像的读取和显示三、图像的显示imshow(I,[lowhigh])I为要显示的图像矩阵。[lowhigh]为指定显示灰度图像的灰度范围。高于high的像素被显示成白色;低于low的像素被显示成黑色;介于High和low之间的像素被按比例拉伸后显示为各种等级的灰色。
figure;imshow(I6);title('TheMainPassPartofTTC10373');figure;%创建一个新的窗口figure;subplot(m,n,p);imshow(I);Subplot(m,n,p)含义为:打开一个有m行n列图像位置的窗口,并将焦点位于第p个位置上。数学建模之Matlab图像处理/1、图像的读取和显示四、图像的格式转换im2bw(I,LEVEL);rgb2gray;从RGB图创建灰度图,存储类型不变。im2uint8将图像转换成uint8类型阈值法从灰度图、RGB图创建二值图。LEVEL为指定的阈值;(0,1)。im2double将图像转换成double类型数学建模之Matlab图像处理/2、图像的点运算灰度直方图描述了一副图像的灰度级统计信息,主要应用于图像分割和图像灰度变换等处理过程中。从数学角度来说,图像直方图描述图像各个灰度级的统计特性,它是图像灰度值的函数,统计一幅图像中各个灰度级出现的次数或概率。归一化直方图可以直接反映不同灰度级出现的比率。横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或概率。imhist(I);%灰度直方图I=imread(‘red.bmp’);%读入图像
figure;%打开新窗口[M,N]=size(I);%计算图像大小[counts,x]=imhist(I,32);%计算有32个小区间的灰度直方图counts=counts/M/N;%计算归一化灰度直方图各区间的值stem(x,counts);%绘制归一化直方图一、图像直方图图像直方图归一化数学建模之Matlab图像处理数学建模之Matlab图像处理/2、图像的点运算二、灰度的线性变换Fa>1时,输出图像的对比度将增大;Fa<1时,输出图像对比度将减小。Fa=1且Fb非零时,所有像素的灰度值上移或下移,使整个图像更暗或更亮。Fa<0,暗区变亮,亮区变暗。数学建模之Matlab图像处理数学建模之Matlab图像处理数学建模之Matlab图像处理/2、图像的点运算三、灰度的对数变换c为尺度比例常数,s为源灰度值,t为变换后的目标灰度值。k为常数。灰度的对数变换可以增强一幅图像中较暗部分的细节,可用来扩展被压缩的高值图像中的较暗像素。广泛应用于频谱图像的显示中。Warning:log函数会对输入图像矩阵s中的每个元素进行操作,但仅能处理double类型的矩阵。而从图像文件中得到的图像矩阵大多是uint8类型的,故需先进行im2double数据类型转换。数学建模之Matlab图像处理I=imread('nir.bmp');%读入图像F=fft2(im2double(I));%FFTF=fftshift(F);%FFT频谱平移F=abs(F);T=log(F+1);%频谱对数变换figure;imshow(F,[]);title('未经变换的频谱');figure;imshow(T,[]);title('对数变换后');数学建模之Matlab图像处理/2、图像的点运算三、灰度的Gamma变换其中,x、y的取值范围为[0,1]。esp为补偿系数,r则为Gamma系数。Gamma变换是根据r的不同取值选择性的增强低灰度区域的对比度或者高灰度区域的对比度。数学建模之Matlab图像处理J=imadjust(I,[low_inhigh_in],[low_outhigh_out],gamma)I=imread('nir.bmp');figure;imshow(imadjust(I,[],[],0.75));%gamma=0.5title('Gamma0.5');原NIR图像Gamma0.5数学建模之Matlab图像处理四、灰度阈值变换及二值化Gamma1.5T为指定阈值BW=im2bw(I,level);%level为人工设定阈值范围为[0,1]thresh=graythresh(I);%自动设定所需的最优化阈值数学建模之Matlab图像处理OTSU算法:最大类间方差法自动单阈值分割。Kapur算法:一维直方图熵阈值算法niblack算法:局部阈值分割阈值的计算公式是T=m+k*v,其中m为以该像素点为中心的区域的平均灰度值,v是该区域的标准差,k是一个系数。kittlerMet:表示kittler最小分类错误(minimumerrorthresholding)全局二值化算法。
原图像直接阈值分割0.25数学建模之Matlab图像处理自动阈值分割OTSU算法分割KittlerMet算法Niblack算法Kapur算法数学建模之Matlab图像处理/2、图像的点运算五、直方图均衡化[J,T]=histeq(I);%J为输出图像,T为变换矩阵图像易受光照、视角、方位、噪声等的影响。使得同一类图像的不同变形体之间的差距有时大于该类图像与另一类图像之间的差距,影响图像识别、分类。图像归一化就是将图像转换到唯一的标准形式以抵抗各种变换,从而消除同类图像不同变形体之间的外观差异。也称为图像灰度归一化。原图像及直方图数学建模之Matlab图像处理图像变亮后灰度均衡化图像变暗后灰度均衡化数学建模之Matlab图像处理/3、图像的几何变换一、图像平移正变换逆变换strel%用来创建形态学结构元素translate(SE,[yx])%原结构元素SE上y和x方向平移imdilate%形态学膨胀数学建模之Matlab图像处理/3、图像的几何变换I=imread('nir.bmp');se=translate(strel(1),[180190]);B=imdilate(I,se);figure;subplot(1,2,1),subimage(I);title('原图像');subplot(1,2,2),subimage(B);title('平移后图像');数学建模之Matlab图像处理/3、图像的几何变换二、图像镜像B=imtransform(A,TFORM,method);TFORM=makeform(transformtype,Matrix);%空间变换结构Method合法值含义‘bicubic’双三次插值‘bilinear’双线性插值‘nearest’最近邻插值参数transformtype指定了变换的类型,常见的’affine’为二维或多维仿射变换,包括平移、旋转、比例、拉伸和错切等。Matrix为相应的仿射变换矩阵。数学建模之Matlab图像处理A=imread('nir.bmp');[height,width,dim]=size(A);tform=maketform('affine',[-100;010;width01]);B=imtransform(A,tform,'nearest');tform2=maketform('affine',[100;0-10;0height1]);C=imtransform(A,tform2,'nearest');figure;imshow(A);figure;imshow(B);imwrite(B,'nir水平镜像.bmp');figure;imshow(C);imwrite(B,'nir垂直镜像.bmp');原图像水平镜像图像垂直镜像图像数学建模之Matlab图像处理A=imread('nir.bmp');tform=maketform('affine',[010;100;001]);B=imtransform(A,tform,'nearest');figure;imshow(A);figure;imshow(B);imwrite(B,'nir转置后图像.bmp');/3、图像的几何变换三、图像转置数学建模之Matlab图像处理/3、图像的几何变换四、图像中心旋转B=imrotate(A,angle,method,’crop’);angle为旋转角度,正值为逆时针旋转。可选参数method为imrotate函数指定插值方法。‘crop’选项会裁减旋转后增大的图像,保持和原图像同样大小。
A=imread('nir.bmp');B=imrotate(A,30,'nearest','crop');figure;imshow(B);imwrite(B,'逆时针中心旋转30度.bmp');逆时针30度数学建模之Matlab图像处理/4、空间域图像增强一、噪声添加h=imnoise(I,type,parameters);type为噪声类型,合法值如下:‘gaussian’高斯白噪声:幅度为高斯分布,功率谱均匀分布‘salt&pepper’黑点如胡椒,白点如盐粒。由图像传感器、传输信道、解码处理、图像切割等产生的黑白相间的亮暗点噪声。添加高斯白噪声添加椒盐噪声数学建模之Matlab图像处理/4、空间域图像增强二、空间域滤波滤波过程就是在图像f(x,y)中逐点移动模板,使模板中心和点(x,y)重合,滤波器在每一点(x,y)的响应是根据模板的具体内容并通过预先定义的关系来计算的。W(-1,-1)W(-1,0)W(-1,1)W(0,-1)W(0,0)W(0,1)W(1,-1)W(1,0)W(1,1)f(x-1,y-1)f(x-1,y)f(x-1,y+1)f(x,y-1)f(x,y)f(x,y+1)f(x+1,y-1)f(x+1,y)f(x+1,y+1)数学建模之Matlab图像处理B=imfilter(f,w,option1,option2,…);f为要进行滤波操作的图像。w为滤波操作使用的模板,为一个二维数组,可自己定义。option1……是可选项,包括:1、边界选项(’symmetric’、’replicate’、’circular’)2、尺寸选项(’same’、’full’)3、模式选项(’corr’、’conv’)原图像滤波后图像数学建模之Matlab图像处理三、滤波器设计/4、空间域图像增强h=fspecial(type,parameters)合法取值功能‘average’平均模板‘disk’圆形领域的平均模板‘gaussian’高斯模板‘laplacian’拉普拉斯模板‘log’高斯-拉普拉斯模板‘prewitt’Prewitt水平边缘检测算子‘sobel’Sobel水平边缘检测算子parameters为可选项,是和所选定的滤波器类型type相关的配置参数,如尺寸和标准差等。type为滤波器的类型。其合法值如下:数学建模之Matlab图像处理/4、空间域图像增强四、中值滤波h=medfilt2(I1,[m,n]);m和n为中值滤波处理的模板大小,默认3*3中值滤波本质上是一种统计排序滤波器。中值不同于均值,是指排序队列中位于中间位置的元素的值。中值滤波并非线性滤波器。对于某些类型的随机噪声具有非常理想的降噪能力。典型的应用就是消除椒盐噪声。数学建模之Matlab图像处理/4、空间域图像增强五、图像锐化图像锐化主要用于增强图像的灰度跳变部分,主要通过运算导数(梯度)或有限差分来实现。主要方法有:Robert交叉梯度,Sobel梯度,拉普拉斯算子,高提升滤波,高斯-拉普拉斯变换。Robert交叉梯度w1对接近正45°边缘有较强响应,w2对接近负45°边缘有较强响应。数学建模之Matlab图像处理Sobel交叉梯度对水平边缘有较大响应对垂直边缘有较大响应拉普拉斯算子数学建模之Matlab图像处理I=imread('nir.bmp');I=double(I);%双精度化w1=[-10;01];w2=[0-1;10];G1=imfilter(I,w1,‘corr’,‘replicate’);%正45°梯度G2=imfilter(I,w2,‘corr’,‘replicate’);%负45°梯度G=abs(G1)+abs(G2);%计算Robert梯度figure;imshow(G,[]);figure;imshow(abs(G1),[]);figure;imshow(abs(G2),[]);Robert交叉梯度I=imread('nir.bmp');Id=double(I);%双精度化h_1=fspecial('log',5,0.5);%大小为5,sigma=0.5的LOG算子I_1=imfilter(Id,h_1,'corr','replicate');figure;imshow(uint8(abs(I_1)),[]);h_2=fspecial('log',5,2);%大小为5,sigma=2的LOG算子I_2=imfilter(Id,h_2,'corr','replicate');figure;imshow(uint8(abs(I_2)),[]);高斯-拉普拉斯锐化数学建模之Matlab图像处理/5、频率域图像增强用傅里叶变换表示的函数特征可以完全通过傅里叶反变换进行重建而不丢失任何信息吉布斯现象Gibbsphenomenon(又叫吉布斯效应):将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。这种现象称为吉布斯现象。数学建模之Matlab图像处理幅度谱相位谱功率谱数学建模之Matlab图像处理一、傅里叶变换/5、频率域图像增强I=fft2(x);%快速傅里叶变换I=fft2(x,m,n);x为输入图像;m和n分别用于将x的第一和第二维规整到指定的长度。当m和n均为2的整数次幂时算法的执行速度要比m和n均为素数时快。I1=abs(I);%计算I的幅度谱I2=angle(I);%计算I的相位谱Y=fftshift(I);%频谱平移I=ifft2(x);%快速傅里叶逆变换I=ifft2(x,m,n);数学建模之Matlab图像处理幅度谱相位谱平移后的相位谱数学建模之Matlab图像处理functionout=imidealflpf(I,freq)%imidealflpf函数构造高斯频域低通滤波器[M,N]=size(I);out=ones(M,N);fori=1:Mforj=1:Nif(sqrt(((i-M/2)^2+(j-N/2)^2))>freq)out(i,j)=0;endendend理想低通functionout=imgaussflpf(I,sigma)%imgaussflpf函数构造高斯频域低通滤波器[M,N]=size(I);out=ones(M,N);fori=1:Mforj=1:Nout(i,j)=exp(-((i-M/2)^2+(j-N/2)^2)/2/sigma^2);endend高斯低通数学建模之Matlab图像处理/6、彩色图像处理色彩模型:RGB模型、CMY模型、CMYK模型、HIS模型、HSV模型、YUV模型、YIQ模型。RGB模型国际照明委员会(CIE)规定以蓝(435.8nm)、绿(546.1nm)和红(700nm)作为主原色。数学建模之Matlab图像处理RGB_image=cat(3,PR,PG,PB);%将PR、PG、PB三个矩阵在第3个维度上进行级联,进行图像合成PR=RGB_image(:,:,1);%提取红色分量PG=RGB_image(:,:,2);%提取绿色分量PB=RGB_image(:,:,3);%提取蓝色分量Matlab中一幅RGB图像可表示为一个M*N*3的3维矩阵。其中每一个彩色像素都在特定空间位置的彩色图像中对应红、绿、蓝3个分量。CMY模型CMY模型是采用(Cyan、Magenta、Yellow)青、品红、黄色3中基本原色按一定比例合成颜色。由于色彩的显示是由光线被物体吸收掉一部分之后反射回来的剩余光线产生,故CMY模型又称为减色法混色模型。当光都被吸收时成为黑色,都被反射时为白色。数学建模之Matlab图像处理CMY模型主要用于彩色打印机和复印机等。CMYK模型CMY模型在实际使用中,青、品红和黄色等比例混合后的黑色并不纯,为产生真正的黑色,专门加入第四种颜色—黑色。得到CMYK模型。用于四色打印。cmy=imcomplement(rgb);%rgb转成cmyrgb=imcomplement(cmy);cmy转成rgb数学建模之Matlab图像处理HSI模型HIS模型是从人的视觉系统出发,直接使用颜色三要素色调(Hue)、饱和度(Saturation)和亮度(Intensity)来描述颜色。亮度指人眼感觉光的明暗程度。光的能量越大,亮度越大。色调由物体反射光线中占优势的波长决定。反映颜色的本质。饱和度指颜色的深浅和浓淡程度,饱和度越高,颜色越深。HIS色彩空间比RGB彩色空间更符合人的视觉特性。亮度和色度具有可分离特性,使得图像处理和机器视觉中大量灰度处理算法都可在HIS彩色空间中方便使用。数学建模之Matlab图像处理色调强度饱和度其中数学建模之Matlab图像处理/7、形态学图像处理一、二值图像腐蚀I2=imerode(I,SE);SE=strel(shape,parameters);I为原始图像,可以是二值或者灰度图像。shape指定了结构元素的形状。parameters是和输入shape有关的参数。合法取值功能描述‘arbitrary’或为空任意自定义结构元素‘disk’圆形结构元素‘square’正方形结构元素‘rectangle’矩形结构元素‘line’线性结构元素‘pair’包含2个点的结构元素‘diamond’菱形的结构元素‘octagon’8角形的结构元素数学建模之Matlab图像处理/7、形态学图像处理二、二值图像膨胀I2=imdilate(I,SE);SE=strel(shape,parameters);I为原始图像,可以是二值或者灰度图像。shape指定了结构元素的形状。parameters是和输入shape有关的参数。原图像腐蚀后膨胀后数学建模之Matlab图像处理/7、形态学图像处理三、其他二值图像运算SE=strel(shape,parameters);I2=imopen(I,SE);%开运算I3=imclose(I,SE);%闭运算Ihm=bwhitmiss(I,SE1,SE2);%击中击不中变换四、连通分量提取[Lnum]=bwlabel(Ibw,conn);Ibw为一幅输入二值图像。conn为可选参数,指明提取连通分量是4连通还是8连通。默认为8。L为连通分量标注图像。num为二值图像Ibw中连通分量个数。数学建模之Matlab图像处理/7、形态学图像处理五、bwmorph函数Iout=bwmorph(I,operation,n)合法取值功能描述‘bridge’桥接有单个像素缝隙分割的前景像素‘clean’清楚孤立的前景像素‘diag’围绕对角线相连的前景像素进行填充‘fill’填充单个像素的孔洞‘hbreak’去掉前景中的H形连接‘majority’如果点P的8领域中一半以上像素为前景像素,则P为前景像素,否则为背景。‘remove’去除内部像素(无背景像素相邻的前景)‘shrink’将物体收缩为一个点或者带洞的环形‘skel’骨骼化图像‘spur’去除“毛刺”‘thicken’粗化物体‘thin’将物体细化至最低限度相连的线形数学建模之Matlab图像处理/7、形态学图像处理六、顶帽变换解决非均匀光照问题。顶帽变换定义为图像f与图像f的开运算之差。a=imread('red.bmp');I=rgb2gray(a);figure,surf(double(I(1:8:end,1:8:end))),zlim([0255]),colormapgray;%显示图像I的三维可视化效果bg=imopen(I,strel(‘disk’,15));%开运算Itophat=imsubtract(I,bg);%顶帽变换figure,imshow(Itophat);figure,surf(double(Itophat(1:8:end,1:8:end))),zlim([0255]);I2=imadjust(Itophat);figure,imshow(I2);数学建模之Matlab图像处理原图像三维可视化效果顶帽变换后的三维可视化效果顶帽变换后图像对比度拉伸后效果数学建模之Matlab图像处理/8、图像分割一、图像分割概述图像分割一般采用的方法有边缘检测(edgedetection)、边界跟踪(edgetracing)、区域生长(regiongrowing)、区域分离和聚合等。
图像分割算法一般基于图像灰度值的不连续性或其相似性。
不连续性是基于图像灰度的不连续变化分割图像,如针对图像的边缘有边缘检测、边界跟踪等算法。
相似性是依据事先制定的准则将图像分割为相似的区域,如阈值分割、区域生长等。二、边缘检测图像的边缘点是指图像中周围像素灰度有阶跃变化或屋顶变化的那些像素点,即灰度值导数较大或极大的地方。
边缘检测可以大幅度的减少数据量,并且剔除不相关信息,保留图像重要的结构属性。
边缘检测基本步骤:平滑滤波、锐化滤波、边缘判定、边缘连接。数学建模之Matlab图像处理边缘检测算法:基于一阶导数:Roberts算子、Sobel算子、Prewitt算子基于二阶导数:高斯-拉普拉斯边缘检测算子Canny边缘检测算法Matlab实现1)、基于梯度算子的边缘检测BW=edge(I,type,thresh,direction,’nothinning’)type合法取值梯度算子‘sobel’sobel算子‘prewitt’prewitt算子‘reberts’robert算子thresh是敏感度阈值参数,任何灰度值低于此阈值的边缘将不会被检测到。默认值为空矩阵[],此时算法自动计算阈值。数学建模之Matlab图像处理direction指定了我们感兴趣的边缘方向,edge函数将只检测direction中指定方向的边缘,其合法值如下:direction合法值边缘方向‘horizontal’水平方向‘vertical’竖直方向‘both’所有方向可选参数’nothinning’,指定时可以通过跳过边缘细化算法来加快算法运行的速度。默认是’thinning’,即进行边缘细化。2)、基于高斯-拉普拉斯算子的边缘检测BW=edge(I,’log’,thresh,sigma)sigma指定生成高斯滤波器所使用的标准差。默认时,标准差为2。滤镜大小n*n,n的计算方法为:n=ceil(sigma*3)*2+1。数学建模之Matlab图像处理3)、基于Canny算子的边缘检测BW=edge(I,’canny’,thresh,sigma)thresh是敏感度阈值参数,默认值为空矩阵[]。此处为一列向量,为算法指定阈值的上下限。第一个元素为阈值下限,第二个元素为阈值上限。如果只指定一个阈值元素,则默认此元素为阈值上限,其0.4倍的值作为阈值下限。如阈值参数没有指定,则算法自行确定敏感度阈值上下限。b1=imread('nir.bmp');h58=fspecial('gaussian',5,0.8);b=imfilter(b1,h58);bw1=edge(b,‘sobel’);%sobel算子bw2=edge(b,‘prewitt’);%prewitt算子bw3=edge(b,‘roberts’);%roberts算子bw4=edge(b,‘log’);%log算子bw5=edge(b,‘canny’);%canny算子figure;imshow(bw1);imwrite(bw1,'nirbwsobel.bmp');figure;imshow(bw2);imwrite(bw2,'nirbwprewitt.bmp');figure;imshow(bw3);imwrite(bw3,'nirbwroberts.bmp');figure;imshow(bw4);imwrite(bw4,'nirbwlog.bmp');figure;imshow(bw5);imwrite(bw5,'nirbwcanny.bmp');数学建模之Matlab图像处理Sobel算子roberts算子prewitt算子log算子canny算子数学建模之Matlab图像处理分析1、边缘定位精度方面:Roberts算子和Log算子定位精度较高。Roberts算子简单直观,Log算子利用二阶导数零交叉特性检测边缘。但Log算子只能获得边缘位置信息,不能得到边缘方向信息。2、边缘方向的敏感性:Sobel算子、Prewitt算子检测斜向阶跃边缘效果较好,Roberts算子检测水平和垂直边缘效果较好。Log算子不具有边缘方向检测功能。Sobel算子能提供最精确的边缘方向估计。3、去噪能力:Roberts算子和Log算子虽然定位精度高,但受噪声影响大。Sobel算子和Prewitt算子模板相对较大因而去噪能力较强,具有平滑作用,能滤除一些噪声,去掉一部分伪边缘,但同时也平滑了真正的边缘,降低了其边缘定位精度。总体来讲,Canny算子边缘定位精确性和抗噪声能力效果较好,是一个折中方案。
数学建模之Matlab图像处理三、Hough变换直线检测/8、图像分割步骤:利用hough()函数执行霍夫变换,得到霍夫矩阵;利用houghpeaks()函数在霍夫矩阵中寻找峰值点;利用houghlines()函数在之前两步结果的基础上得到原二值图像中的直线信息。[H,theta,rho]=hough(BW,param1,val1,param2,val2)1、霍夫变换(针对二值图像)Param合法值含义‘ThetaResolution’Hough矩阵中a轴方向上单位区间长度,[0,90]‘RhoResolution’Hough矩阵中p轴方向上单位区间长度,[0,norm(size(BW))]数学建模之Matlab图像处理2、寻找峰值—houghpeakspeaks=houghpeaks(H,numpeaks,param1,val1,param2,val2)Param合法值含义‘Threshold’峰值的阈值,默认为0.5*max(H(:))‘NHoodSize’在每次检测出一个峰值后,NHoodSize指出了在该峰值周围需要清零的邻阈信息。以向量[MN]形式给出,其中M、N均为正奇数。默认为大于等于size(H)/50的最小奇数peaks是一个Q*2的矩阵,每行的两个元素分别为某一峰值点在Hough矩阵中的行、列索引,Q为找到的峰值点的数目。3、提取直线段—houghlineslines=houghlines(BW,theta,rho,peaks,param1,val1,param2,val2)数学建模之Matlab图像处理Param合法值含义‘FillGap’线段合并的阈值:如果对应于Hough矩阵某一个单元格(相同的a和p)的2个线段之间的距离小于FillGap,则合并为1个直线段。默认值为20‘MinLength’检测的直线段的最小长度阈值:如果检测出的直线线段长度大于MinLength,则保留,否则丢弃。默认值为40。域含义point1直线段的端点1point2直线段的端点2theta对应在霍夫矩阵中的arho对应在霍夫矩阵中的p返回值lines的结构数学建模之Matlab图像处理I1=imread('004.jpg');I=rgb2gray(I1);%旋转图像并寻找边缘rotI=imrotate(I,33,'crop');BW=edge(rotI,'canny');%执行Hough变换并显示Hough矩阵[H,T,R]=hough(BW);figure;imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');xlabel('\theta'),ylabel('\rho');axison,axisnormal,holdon;%在Hough矩阵中寻找前5个大于Hough矩阵中最大值0.3倍的峰值P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));x=T(P(:,2));y=R(P(:,1));%由行、列索引转换成实际坐标plot(x,y,'s','color','white');%在Hough矩阵图像中标出峰值位置%找出并绘制直线lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《时尚影视化装设计》2021-2022学年第一学期期末试卷
- 2024年共同赡养孩子协议书模板
- 香港海关保密协议书范文范本
- 2024年多层小区出租合同范本
- 2024年大型钢企销售合同范本
- 吉林师范大学《微控制器导论》2021-2022学年期末试卷
- 《供应链管理》教案 张静芳 第3章 供应链网络构建;第4章 供应链协调管理
- 农村买卖房屋的契约协议书范文
- 吉林师范大学《曲式与作品分析》2021-2022学年第一学期期末试卷
- 吉林师范大学《建筑给水排水工程》2021-2022学年第一学期期末试卷
- 2024年海岛旅游行业分析报告及未来发展趋势
- 针刺伤标准预防
- 团播主持人协议
- 跨国企业中方外派人员的跨文化适应
- 国际航空运费计算
- 《静载试验讨论》课件
- 《光伏屋顶系统简介》课件
- 村里建群管理制度
- 消防车事故培训课件模板
- 【城市轨道交通运营安全管理研究5300字】
- 2024年中核汇能有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论