解题报告第一赛problem_第1页
解题报告第一赛problem_第2页
解题报告第一赛problem_第3页
解题报告第一赛problem_第4页
解题报告第一赛problem_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Theonestoremain

TimeLimit:1000ms,SpecialTimeLimit:2500ms,MemoryLimit:32768KBProblem11135:Nospecialjudgement

Problemdescription

ThereareNsoldiersstandinginoneline.Theyaremarkedfrom1toN,fromrighttoleft.Andtheyaregivenanumberm.Thenthesoldiersnumberedoff,straightfromtheright-handman.Theonewhoreportedanumberthatisthemultipleofmwaskeptintheline.Othershavetoleavetheline.Theycontinuedoingthistillthenumberofpeopleinthelineislessthanm.Forexample,ifthereare10soldiers,andm=3.Forthefirsttimethesoldierswhoaremarked3,6,9remainintheline.Forthesecondtimethesoldierwhoismarked9remainsintheline.Becausethenumberofsoldiersinthelineislessthanm,sothesoldiermarked9wastheonlyonetoremainintheline.

Nowwewanttoknowwhowillbetheonestoremain,canyoutellus?

Input

Thereareseveraltestcasesintheinput.Eachtestcasesisonlyoneline,containstwointegersnandm.(3<=n<=109,2<=m<=n).Theinputendswhenn=0andm=0.

Output

Foreachtestcase,outputtwolines.Thefirstlinecontainsoneintegerx,thenumberofsoldierstoremain.Thesecondlinecontainsxintegers,thenumbersmarkedonthesoldierswhoremainintheline.Youshouldoutputtheminincreasingorder.

SampleInput

103

83

00

SampleOutput

1

9

2

36

NumberGuessing

TimeLimit:1000ms,SpecialTimeLimit:2500ms,MemoryLimit:32768KBProblem11146:Nospecialjudgement

Problemdescription

NumberGuessingisacomputergame.First,thecomputerchoosesfourdifferentdigits,youneedtoguessthesefourdigitsinthefewesttimes,foreachguess,thecomputerwillshowajudgementintheformof"#A#B","#"isanumber0~4."#A"showshowmanydigitsyouguessedwithbothcorrectvalueandposition."#B"showshowmanydigitsyouguessedwithcorrectvalue.Forexample,thecomputerchose1234,andyouguessed6139,thecomputerwillshow"1A2B"foryouhavenumber"1"correctvaluebutwrongpositionandnumber"3"correctvaluewithcorrectposition.Thusthecomputergivesyouthejudgementof"1A2B"

Nowyouhavememorizedthedigitsyouguessedandthejudgementsyougot,youfeellikeyoucanfigureoutthecorrectanswer.Lifeisfilledwithwisdom,isn'tit?

Input

Thereareseveraltestcases.Foreachtestcase,thefirstlinecontainsasinglepositiveintegerNindicatesthetimesyoucanguess,thefollowingNlinesistherecordoftheguess,intheform:

#####A#B

Thefirstfournumbersisthenumbersguessed,thenthejudgementsforyourguess.TheinputterminatedwhenNisnotpostiveinteger,andnotneedtoproceed.

Output

Foreachtestcase,outputasinglelinecontainsexactlyfourdigitsthatthecomputerhaschosen.Youmayassumethateachtestcasegivesyouenoughinformation,soyoucanfigureoutthecorrectanswer.

SampleInput

2

12342A4B

12430A4B

3

07323A3B

15260A0B

45670A2B

-1

SampleOutput

2134

0734

ChineseChess

BothXnbyandHekuilikeplayingChineseChess.Therearetwosides:blackandred

(inthefiguresbelow,redisthepieceswithwhitecharacters)inChineseChess.Eachsidetakemovesinturns.Oneday,theymadeacomposition(Now,it’sred'sturn):

Bytheway,eachsidecanonlymovethe”Cannon”

and

the”Pawn”

.Thecannoncanmoveinstraightlinesatany

distance(fromonecrosstoanother)ifnootherchesspiecesblock

itsway.Andthepawncanonlymoveforward,oneunitperturn.(Forthered,top-bottomisforward,andfortheblack,bottom-top).

Afterthediscussion,theyallagreethatonlywhenoneside,forexample,theblackcannonisforcedtotakeahorizonalmovewhich

makestheredcannoncangettothehemlineoftheblack,thentheredwins(Seethefollowingfigure).

So,theymakeafewrules:

Thecannoncanonlymoveforward.Ifonesidehastomovethe“cannon”toleftorright,heloses.Noticethatitdoesn'tchangesituationifacannonmovesbackward,becausetheoppositesidecanmoveitscannonforwardforthesamedistance.

Onlythepawnswhichhaven'tcrossedtherivercanmove.Andthedistancebetweeneachpairofpawns(onered,oneblack)mustexceed1.

Thewinneronlydependsonthedistancemandn(betweenthepairofcannonsinthesameverticallinecountingfromtheleftside),S1,S2,S3(betweenthepairofpawns”whichnotcrosstheriverinthesameverticallinecountingfromtheleftside).

XnbyandHekuiwanttoknow:whichsideisthewinnerwheneachofthemmovesinthebeststrategy.Tomakeitmoreinteresting,

m,n,S1,S2,S3arenotlimitedbyChineseChessboard,inotherwords,Chessboardofthisgameislargeenough.

输入

Thereareseveraltestcases,eachcaseinasinglelinewhichcontains5integersseparatedbyablank:m,n,S1,S2,S3,0≤m,n≤1000000,1≤S1,S2,S3≤1000。Theinputterminateswhenonelinecontainsasinglenegativeinteger,whichneedn'ttobeprocessed.

输出

Foreachtestcase,outputthewinner(RedorBlack)

样例输入

41221

00111

-1

样例输出

RedBlack

PageReplacement

Pagereplacementalgorithmswereahottopicofresearchanddebateinthe1960sand1970s.ThatmostlyendedwiththedevelopmentofsophisticatedLRUapproximationsandworkingsetalgorithms.Sincethen,somebasicassumptionsmadebythetraditionalpagereplacementalgorithmswereinvalidated,resultinginarevivalofresearch.Inparticular,thefollowingtrendsinthebehaviorofunderlyinghardwareanduser-levelsoftwarehasaffectedtheperformanceofpagereplacementalgorithms:

Sizeofprimarystoragehasincreasedbymultipleordersofmagnitude.Withseveralgigabytesofprimarymemory,algorithmsthatrequireaperiodiccheckofeachandeverymemoryframearebecominglessandlesspractical.Memoryhierarchieshavegrowntaller.ThecostofaCPUcachemissisfarmoreexpensive.Thisexacerbatesthepreviousproblem.

Localityofreferenceofusersoftwarehasweakened.Thisismostlyattributedtothespreadofobject-orientedprogrammingtechniquesthatfavorlargenumbersofsmallfunctions,useofsophisticateddatastructuresliketreesandhashtablesthattendtoresultinchaoticmemoryreferencepatterns,andtheadventofgarbagecollectionthatdrasticallychangedmemoryaccessbehaviorofapplications.

Requirementsforpagereplacementalgorithmshavechangedduetodifferencesinoperatingsystemkernelarchitectures.Inparticular,mostmodernOSkernelshaveunifiedvirtualmemoryandfilesystemcaches,requiringthepagereplacementalgorithmtoselectapagefromamongthepagesofbothuserprogramvirtualaddressspacesandcachedfiles.Thelatterpageshavespecificproperties.Forexample,theycanbelocked,orcanhavewriteorderingrequirementsimposedbyjournaling.

Moreover,asthegoalofpagereplacementistominimizetotaltimewaitingformemory,ithastotakeintoaccountmemoryrequirementsimposedbyotherkernelsub-systemsthatallocatememory.Asaresult,pagereplacementinmodernkernels(Linux,FreeBSD,andSolaris)tendstoworkatthelevelofageneralpurposekernelmemoryallocator,ratherthanatthehigherlevelofavirtualmemorysubsystem.

Therearemanypagereplacementalgorithms,oneofthemisLRU:

Theleastrecentlyusedpage(LRU)replacementalgorithm,thoughsimilarinnametoNRU(Notrecentlyused),differsinthefactthatLRUkeepstrackofpageusageoverashortperiodoftime,whileNRUjustlooksattheusageinthelastclockinterval.LRUworksontheideathatpagesthathavebeenmostheavilyusedinthepastfewinstructionsaremostlikelytobeusedheavilyinthenextfewinstructionstoo.WhileLRUcanprovidenear-optimalperformanceintheory(almostasgoodasAdaptiveReplacementCache),itisratherexpensivetoimplementinpractice.Thereareafewimplementationmethodsforthisalgorithmthattrytoreducethecostyetkeepasmuchoftheperformanceaspossible.

OneimportantadvantageofLRUalgorithmisthatitisamenabletofullstatisticalanalysis.Ithasbeenproved,forexample,thatLRUcanneverresultinmorethanN-

7012

string

0304230321201701reference

7772 2 4440 1 11

000 0 0033 3 00 page

framesinpool

11 3 3222 2 27

Foragivenreferencestring,youneedtocalculatethenumberofpagefaults.

输入

Thefirstlinecontainsaninteger,thenumberoftestcases.Eachtestcasecontainstwolines,thefirstlineisthecapacityofthemanagementpoolm(0<m≤10000),andthelengthofreferencestringn(0<n≤100000).Thenextlinecontainsexactlynintegers,whichindicatethereferencesequenceofpageframes(pagenumberrangedfrom0ton).

输出

Foreachtestcase,theoutputshouldcontainsthenumberofpagefaultsthatoccurred.

样例输入

3

35

12345

35

12123

320

70120304230321201701

样例输出

5

3

12

STTask

YougetaSTtask,thatis:givenastickoneendofwhoismooredontheground,youareaskedtoturnoverthestickbyholdingtheotherend.Whenitreachesthegroundagain,thetaskisfinished.Itistruethatontheprocess,thestickisalwaysonthesameplaneverticaltheground.Andonthisplane,thereislightfromuptodown,sothatwecanseeonthegroundalineofshadow.Lookatthepicture:

Inordertoexpresstheshadowpartandtheun-shadow(lightspace)part,tosimpletheproblemwejustneedtoexpressthelengththat2timesofthelengthofthestickwheretheshadowmayoccur.

Now,givetheproblem:thestickonthebeginningisontheleftofthemooredpoint,andweturnitoncertainangularspeed,usinga‘S’todenoteoneunitofthelightspaceanda‘T’foroneunitoftheshadowline.Besidethat,arealnumberisneededtotellthescalebetweentheshadowlineandthefulllinewhereshadowmaybe.

输入

Thereisonlyonecase.TwointegersL(0<L≤25)andV(0<V≤90)isgiven.Listhelengthofthestick;Vistheangularspeedoftheturningtask,inanglepersecond

输出

Foreverysecondduringthetask,youareaskedtotelltheshapeoftheshadowontheground.Seethesample:‘S’forthelightspaceand‘T’fortheshadow.

样例输入

2515

样例输出

TTTTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.50000

STTTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.48296

SSSTTTTTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.43301

SSSSSSSTTTTTTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.35355

SSSSSSSSSSSSTTTTTTTTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.25000

SSSSSSSSSSSSSSSSSSSTTTTTTSSSSSSSSSSSSSSSSSSSSSSSSS 0.12941

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 0.00000

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTSSSSSSSSSSSSSSSSSSS 0.12941

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTSSSSSSSSSSSS 0.25000

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTSSSSSSS 0.35355

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTSSS 0.43301

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTTTS 0.48296

SSSSSSSSSSSSSSSSSSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTTTT 0.50000

提示

Ifthestickis3inlength,andtheshadowlineis1.49,wehavetheanswerthismoment:SSTSSS0.24833Ifthestickis3inlength,andtheshadowlineis1.51,wehavetheanswerthismoment:STTSSS0.25167Thatis,thenumberof‘T’alwaysisthenearestintegerofthelengthofshadow.

8numbersproblem

Ithinkalmosteveryacmerwillknowthe8numbersproblemwhichisaveryfamousproblem.Thegamebeginfromtheinitialstateofa3*3matrixwhichmakesupof8numbers(1-8)andablankblock(0).movetheblankblockwithitsadjacentblockuntilreachtheobjectivestate.Itisobviousthattheblankblockhasfourdirectionswhichitcanmovetowhenitisatthemiddleposition,i.e.up,down,left,right.Also,ithastwodirectionswhenitisatthecornerofthematrixandthreedirectionsatotherposintion.Formexample,theinitialstateofthematrix:

803

214

765

theobjectivestate:

123

804

765

andwegiveavalidmovingpath:

8

0

3

8

1

3

8

1

3

0

1

3

1

0

3

1

2

3

2

1

4

>2

0

4

>0

2

4

>8

2

4

>8

2

4

>8

0

4

7

6

5

7

6

5

7

6

5

7

6

5

7

6

5

7

6

5

Moreover,thepathwithleaststepsiscalledtheshortestpath.Andthe8numbersischeckwhethertherearethepathfromtheinitialstatetotheobjectivestateandifitexists,givetheshortestpath.

Andweallknowhuicpc229isnotverygoodatsearch,sohehasn'tsolvedthisproblemnow.Buthehassolvedanothereasyproblem.Theproblemisdescribedasfollow:

Giveaninitialstateofthematrix,andgiveasequenceofmoving.Foreverymoving,iftheblankblockcanmovetothedirectionasthemoving,moveit,otherwiseignorethismoving.Andwewanttoknowthefinalstateofthematrix.

输入

Thefirstlineoftheinputisoneintegert,thenumberoftestcase.Foreachtestcase:

Threelinesrespondtotheinitialstateofthematrix,andtherewillbethreenumbersoneachofthethreelines.

Followbyanintergermcorrespondingtothenumberofmoving.

Thenextmline,everylinecontainonlyonecharacter:

U:movetheblankblockupforoneblock.D:movetheblankblockdownforoneblock.L:movetheblankblockleftforoneblock.

R:movetheblankblockrightforoneblock.

输出

Foreachtestcaseoutputthefinalstateofthematrixforthreelinesasabove.Andtherewillbeablankspacebetweeneverytwonumbersonthesameline.Andyoushouldoutputoneblanklineaftereachtestcase.

样例输入

1

803

214

765

2

DR

样例输出

813

240

765

TheQianJinTeachingBuilding

时间限制(普通/Java):10000MS/100000MS 运行内存限制:65536KByte

Whenyoutrytosolvethisproblem,Ithinkthereisonlyatmostonemonthleftforourfootmen(FM2008)stayingatourAlmaMater.Ithinkthesefouryearsisthehappiestandmostimportanttimeinallmylife.IlearnedtostudyandmetsomanysincerefriendsinourschoolespeciallyinourACMteam.Itistoosimplethatjustsay“THX”toexpressmysincerethank,butImustsay“Thankyou“foryouall.IsendmyparticularthanktoDoctorWuforyouhelpandcaretomeandthewholeACMteam.Huicpc3-15,myteammateatfootmen,isthemostimportantbosomfriendinmylife.WeareclassmatesintheMathematicsandAppliedMathematics05-

1.WetookpartintheMathematicalModelingContesttogether,andparticipatedinACMContestasteammates.Wesurmountedthedifficulties,sufferedthedefeatandenjoyedthegladofsuccesstogether.Togetherwetastedthejoysandsorrowsoflife.Butitisalwaystruethatpleasanthoursflypast,anditistimetopart.Ican’thelptorunbacktothetimewhenwestudiedintheQianjingteachingbuildingforourexaminationsandlearnedtheknowledgeaboutalgorithmandprogramming.

Asweallknowthenumbersofseatsintheclassroomsarenotalwayssame.Whentheexaminationweekcomes,therewillbethesecasesthatitistoolargeforaclassbutthereisnosmallclassroomwhichisenoughforthem.Somanyseatsareleftunusedbutwecan’tuse.SoeverytimewewenttotheQianjinteachingbuildingtostudy,itisahardtimetofindafreeclassroom.Ireallylikeifth

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论