版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年福建省南平市高职录取数学自考测试卷题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.已知点A(-2,2),B(1,5),则线段AB的中点坐标为()
A.(-1,7)B.(3/2,3/2)C.(-3/2,-3/2)D.(-1/2,7/2)
2.函数y=1/2sin2x的最小正周期是()
A.4ΠB.Π/4C.2ΠD.Π
3.已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是()
A.6B.7C.8D.9
4.已知在x轴截距为2,y截距为-3的直线方程为()
A.3x-2y+6=0B.3x-2y-6=0C.x-2y-3=0D.x-2y+5=0
5.设a=log₃2,b=log₅2,c=log₂3,则
A.a>c>bB.b>c>aC.c>b>aD.c>a>b
6.在一个口袋中有2个白球和3个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率是()
A.3/7B.9/10C.1/5D.1/6
7.设集合A={1,2,3},B={1,2,4}则A的∪B=()
A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}
8.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会则不同的选派方案共有()
A.41种B.420种C.520种D.820种
9.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()
A.3/10B.1/10C.1/9D.1/8
10.“0<x<1”是“x²
A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件
11.cos78°*cos18°+sin18°sin102°=()
A.-√3/2B.√3/2C.-1/2D.1/2
12.已知顶点在原点,准线方程x=4的抛物线标准方程()
A.y²=-16xB.y²=8xC.y²=16xD.y²=-8x
13.若抛物线y²=2px(p>0)的准线与圆(x-3)²+y²=16相切,则p的值为()
A.1/2B.1C.2D.4
14.设定义在R上的函数y=f(x)是奇函数,f(x)在区间(0,+∞)上为增函数,则f(2),f(4),-f(-3)之间的大小关系是()
A.f(2)<-f(-3)
B.f(2)<f(4)<-f(-3)
C.-f(-3)<f(4)
D.f(4)<f(2)<-f(-3)
15.下列各角中,与330°的终边相同的是()
A.570°B.150°C.−150°D.−390°
16.圆(x-2)²+y²=4的圆心到直线x+ay-4=0距离为1,且a>0,则a=()
A.3B.2C.√2D.√3
17.盒内装有大小相等的3个白球和1个黑球,从中摸出2个球,则2个球全是白球的概率是()
A.3/4B.2/3C.1/3D.1/2
18.在一个口袋中有除了颜色外完全相同的5个红球3个黄球、2个蓝球,从中任意取出5个球,则刚好2个红球、2个黄球、1个蓝球的概率是()
A.2/5B.5/21C.1/2D.3/5
19.若x,a,2x,b成等差数列,则a/b=()
A.1/2B.3/5C.1/3D.1/5
20.与5Π/3终边相同的角是()
A.2Π/3B.-2Π/3C.-Π/3D.Π/3
21.在等差数列(an)中,a1=-33,d=6,使前n项和Sn取得最小值的n=()
A.5B.6C.7D.8
22.已知向量a=(2,-3),向量b=(一6,y),且a⊥b,则y=()
A.-9B.9C.4D.-4
23.样本5,4,6,7,3的平均数和标准差为()
A.5和2B.5和√2C.6和3D.6和√3
24.不等式|x²-2|<2的解集是()
A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)
25.log₄64-log₄16等于()
A.1B.2C.4D.8
26.不等式(x²-4x−5)(x²+8)<0的解集是()
A.{x|-1<x<5}
B.{x|x<-1或x>5}
C.{x|0<x<5}
D.{x|−1<x<0}
27.在等比数列{an}中,已知a₃,a₅是方程x²-12x+9=0的两个根,则a₄=()
A.12B.9C.±2√3D.±3
28.“θ是锐角”是“sinθ>0”的()
A.充分不必条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
29.若某班有5名男生,从中选出2名分别担任班长和体育委员则不同的选法种数为()
A.5B.10C.15D.20
30.倾斜角为60°,且在y轴上截距为−3的直线方程是()
A.√3x-y+3=0B.√3x-y-3=0C.3x-√y+3=0D.x-√3y-3=0
31.已知直线l的倾斜角是45,在轴上的截距是2,则直线l的方程是()
A.x-y-2=0B.x一y+2=0C.z+y+2=0D.x+y-2=0
32.已知向量a=(1,1),b=(0,2),则下列结论正确的是()
A.a//bB.(2a-b)⊥bC.2a=bD.a*b=3
33.两个正方体的体积之比是1:8,则这两个正方体的表面积之比是()
A.1:2B.1:4C.1:6D.1:8
34.已知等差数列{an}的公差为2,若a₁,a₃,a₄成等比数列,则a₂=().
A.-4B.-6C.-8D.-10
35.数轴上的点A到原点的距离是3,则点A表示的数为()
A.3或-3B.6C.-6D.6或-6
36.函数y=4x²的单调递增区间是().
A.(0,+∞)B.(1/2,+∞)C.(-∞,0)D.(-∞,-1/2)
37.在△ABC中,a=√3,b=2,c=1,那么A的值是()
A.Π/2B.Π/3C.Π/4D.Π/6
38.“x>0”是“x≠0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
39.已知sinθ+cosθ=1/3,那么sin2θ的值为()
A.2√2/3B.-2√2/3C.8/9D.-8/9
40.双曲线x²/10+y²/2=1的焦距为()
A.2√2B.2√3C.4√2D.4√3
41.设命题p:x>3,命题q:x>5,则()
A.p是q的充分条件但不是q的必要条件
B.p是q的必要条件但不是q的充分条件
C.p是q的充要条件
D.p不是q的充分条件也不是q的必要条件
42.以点P(-4,3)为圆心的圆与直线2x+y-5=0相离,则圆半径取值范围是()
A.(0,2)B.(0,√5)C.(0,2√5)D.(0,10)
43.抛物线y²=4x的准线方程是()
A.x=-1B.x=1C.y=-1D.y=-1
44.直线l₁的方程为x-√3y-√3=0,直线l₂的倾斜角为l₁倾斜角的2倍,且l₂经过原点,则l₂的方程为()
A.2x-√3y=0B.2x+√3y=0C.√3x+y=0D.√3x—y=0
45.两条平行直线l₁:3x+4y-10=0和l₂:6x+8y-7=0的距离为()
A.1B.17C.13D.13/10
46.参加一个比赛,需在4名老师,6名男学生和4名女学生中选一名老师和一名学生参加,不同的选派方案共有多少种?()
A.14B.30C.40D.60
47.某山上山有4条路线,下山有3条路线,则某人上山到下山不同路线为()
A.12种B.7种C.4种D.3种
48.设a>b,c>d,则下列不等式成立的是()
A.ac>bdB.b+d
d/bD.a-c>b-d
49.已知点A(1,1)和点B(5,5),则线段AB的垂直平分线方程为()
A.x+y-6=0B.2x+y一6=0C.z+y+6=0D.4x+y+6=0
50.已知两个班,一个班35个人,另一个班30人,要从两班中抽一名学生,则抽法共有()
A.1050种B.65种C.35种D.30种
二、填空题(20题)51.已知函数f(x)是定义R上的奇函数,当x∈(-∞,0)时,f(x)=2x³+x²,则f(2)=________。
52..已知数据x₁,x₂,……x₂₀的平均数为18,则数据x₁+2,,x₂+2,x₂₀+2的平均数是______。
53.已知f(x)=x+6,则f(0)=____________;
54.若2^x>1,则x的取值范围是___________;
55.设圆的方程为x²+y²-4y-5=0,其圆心坐标为________。
56.圆x²+2x+y²-4y-1=0的圆心到直线2x-y+1=0的距离是________。
57.设{an}是等差数列,且a₃=5,a₅=9,则a₂·a₆=()
58.已知圆x²+y²一2kx+2y+1=0(k>0)的面积为16Π,则k=________。
59.已知函数y=f(x)是奇函数,且f(2)=−5,则f(−2)=_____________;
60.lg100-log₂1+(√3-1)=___________;
61.双曲线x²/4-y²=1的渐近线方程为__________。
62.不等式|8-2x|≤3的解集为________。
63.不等式3|x|<9的解集为________。
64.双曲线x²-y²=-1的离心率为_________________。
65.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
66.甲乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得的环数如下:0,1,5,9,10,那么成绩较为稳定的是________。
67.直线y=ax+1的倾斜角是Π/3,则a=________。
68.已知直线kx-y-1=0与直线x+2y=0互相平行,则k=_____。
69.已知平面向量a=(1,2),b=(-2,m),且a⊥b,则a+b=_________。
70.函数y=(cos2x-sin2x)²的最小正周期T=________。
三、计算题(10题)71.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
72.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
73.求函数y=cos²x+sinxcosx-1/2的最大值。
74.解下列不等式x²>7x-6
75.解下列不等式:x²≤9;
76.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)
77.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。
78.已知sinα=1/3,则cos2α=________。
79.已知集合A={X|x²-ax+15=0},B={X|x²-5x+b=0},如果A∩B={3},求a,b及A∪B
80.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?
参考答案
1.D考点:中点坐标公式应用.
2.D
3.C[解析]讲解:集合子集的考察,首先求A∩B={0,2,4}有三个元素,则子集的个数为2^3=8,选C
4.B
5.D
6.B
7.D
8.B
9.A
10.A
11.D
12.A
13.C[解析]讲解:题目抛物线准线垂直于x轴,圆心坐标为(3,0)半径为4,与圆相切则为x=−1或x=7,由于p>0,所以x=−1为准线,所以p=2
14.A
15.D[解析]讲解:考察终边相同的角,终边相同则相差整数倍个360°,选D
16.D
17.D
18.B
19.B
20.C
21.B
22.D
23.B
24.D[解析]讲解:绝对值不等式的求解,-2<x²-2<2,故0<x²
25.A
26.A[解析]讲解:一元二次不等式的考察,由于括号内x²+8始终是大于0的,所以整体的正负是由前一个括号控制的,所以等价于x²-4x−5<0,解得1<x<5
27.D
28.A由sinθ>0,知θ为第一,三象限角或y轴正半轴上的角,选A!
29.D
30.B
31.A
32.B
33.B[解析]讲解:由于立方体的体积为棱长的立方,当体积比为1:8的时候,棱长比就应该为1:2,表面积又是六倍棱长的平方,所以表面积之比为1:4。
34.B[解析]讲解:等差数列中a₃=a₁+2d,a₄=a₁+3d,a₁,a₃,a₄成等差数列,所以(a₁+2d)²=a₁(a₁+3d),解得a₁=-8,a₂=-6
35.A
36.A[解析]讲解:二次函数的考察,函数对称轴为y轴,则单调增区间为(0,+∞)
37.B
38.A[答案]A[解析]讲解:逻辑判断题,x>0肯定x≠0,但x≠0不一定x>0,所以是充分不必要条件
39.D
40.D由双曲方程可知:a²=10,b²=2,所以c²=12,c=2√3,焦距为2c=4√3.考点:双曲线性质.
41.B考查充要条件概念,x>5=>x>3,所以p是q的必要条件;又因为x>3=>x>>5,所以p不是q的充分条件,故选B.考点:充分必要条件的判定.
42.C
43.A
44.D
45.D
46.C
47.A
48.B本题是选择题可以采用特殊值法进行检验。因为a>b,c>d,所以设B=-1,a=-2,d=2,c=3,故选B.考点:基本不等式
49.A
50.B
51.12
52.20
53.6
54.X>0
55.y=(1/2)x+2y
56.8
57.33
58.4
59.5
60.3
61.y=±2x
62.[5/2,11/2]
63.(-3,3)
64.√2
65.(x-2)²+(y+1)²=8
66.甲
67.√3
68.-1/2
69.(-1,3)
70.Π/2
71.解:设原来三个数为a-d,a,a+d,则(a-d)+a+(a+d)=9所以3a=9,a=3因为三个数为3-d,3,3+d又因为3-d,3,7+d成等比数列所以(3-d)(7+d)=3²所以d=2或d=-6①当d=2时,原来这三个数为1,3,5②当d=-6时,原来三个数为9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师新学期工作计划教师工作计划个人
- 2024外贸单证员工作计划
- 职工年度工作计划
- 检验科培训计划范文
- 初中新学期开学自我介绍-新学期计划初中
- 公司部门管理计划制定参考
- 高三地理第一学期教学计划
- 岗位培训内容中学教师岗位培训工作计划
- 2024年大学学习部工作计划
- 2024秋季学校安全工作计划参考范文
- 人工智能法学前沿理论与实证研究
- 《合同交底范本》课件
- 驾驶员心理健康教育培训课件
- 下步工作计划及思路
- 2023-2024学年广东省深圳市福田区八年级(上)学期期末联考数学试题(含解析)
- 教科版科学四年级上册全册教案教学设计
- 《甲状腺危象》课件
- 润滑油物流行业分析
- 传染病的全球监测与控制
- 部编版小学道德与法治五年级上册单元复习课件(全册)
- 动画专业大学生职业生涯规划书
评论
0/150
提交评论