下期湖南岳阳市城区2024届数学八上期末监测模拟试题含解析_第1页
下期湖南岳阳市城区2024届数学八上期末监测模拟试题含解析_第2页
下期湖南岳阳市城区2024届数学八上期末监测模拟试题含解析_第3页
下期湖南岳阳市城区2024届数学八上期末监测模拟试题含解析_第4页
下期湖南岳阳市城区2024届数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

下期湖南岳阳市城区2024届数学八上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.的算术平方根为()A. B. C. D.2.如图,在▱ABCD中,AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为()A.2.6 B.1.4 C.3 D.23.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列各数是有理数的是()A. B. C. D.π5.将直线y=-x+a的图象向下平移2个单位后经过点A(3,3),则a的值为()A.-2 B.2 C.-4 D.86.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人7.如图,已知AD=CB,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠DAB=∠CBA C.∠CAB=∠DBA D.∠C=∠D=90°8.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个 B.3个 C.4个 D.5个9.若分式方程无解,则的值为()A.5 B.4 C.3 D.010.已知△ABC中,AB=17cm,AC=10cm,边上的高AD=8cm,则边的长为()A. B.或 C. D.或二、填空题(每小题3分,共24分)11.在△ABC中,AB=AC,与∠BAC相邻的外角为80°,则∠B=________.12.如图,AB⊥y轴,垂足为B,∠BAO=30°,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-x上,依次进行下去…若点B的坐标是(0,1),则点O2020的纵坐标为__________;13.如图,矩形在平面直角坐标系内,其中点,点,点和点分别位于线段,上,将沿对折,恰好能使点与点重合.若轴上有一点,能使为等腰三角形,则点的坐标为___________.14.如图,已知,,按如下步骤作图:(1)分别以、为圆心,以大于的长为半径在两边作弧,交于两点、;(2)经过、作直线,分别交、于点、;(3)过点作交于点,连接、.则下列结论:①、垂直平分;②;③平分;④四边形是菱形;⑤四边形是菱形.其中一定正确的是______(填序号).15.如果关于x的一元二次方程没有实数根,那么m的取值范围是_____________.16.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.17.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.18.在实数范围内,把多项式因式分解的结果是________.三、解答题(共66分)19.(10分)2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?20.(6分)(1)因式分解:x3-4x;(2)x2-4x-1221.(6分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.22.(8分)某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A绕三棱柱侧面一周到顶点安装灯带,已知此三棱柱的高为4m,底面边长为1m,求灯带最短的长度.23.(8分)已知x=2+1,求24.(8分)如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.试判断BD与AC的位置关系和数量关系,并说明理由;如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.25.(10分)如图,点A、B、C表示三个自然村庄,自来水公司准备在其间建一水厂P,要求水厂P到三个村的距离相等。请你用“尺规作图”帮自来水公司找到P的位置(不要求写出作法但要保留作图痕迹).26.(10分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2、B【分析】由平行四边形ABCD中,BE平分∠ABC,可证得△BCE是等腰三角形,继而利用DE=CE-CD,求得答案.【题目详解】解:四边形是平行四边形,,,.平分,,,,.故选:.【题目点拨】此题考查了平行四边形的性质,能证得△BCE是等腰三角形是解此题的关键.3、B【分析】根据各象限内点的坐标特征解答.【题目详解】解:点(﹣2,3)在第二象限.故选B.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、A【分析】根据实数的分类即可求解.【题目详解】有理数为,无理数为,,π.故选:A.【题目点拨】此题主要考查实数的分类,解题的关键是熟知无理数的定义.5、D【分析】先根据平移规律得出平移后的直线解析式,再把点A(3,3)代入,即可求出a的值.【题目详解】解:将直线y=-x+a向下平移1个单位长度为:y=-x+a−1.把点A(3,3)代入y=-x+a−1,得-3+a−1=3,解得a=2.故选:D.【题目点拨】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b,向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n,向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.6、B【题目详解】抽取的样本容量为50÷25%=1.所以C等所占的百分比是20÷1×100%=10%.D等所占的百分比是1-60%-25%-10%=5%.因此D等所在扇形的圆心角为360°×5%=18°.全校学生成绩为A等的大约有1500×60%=900(人).故选B.7、C【分析】由全等三角形的判定可求解.【题目详解】当AC=BD时,且AD=BC,AB=AB,由“SSS”可证△ABC≌△BAD;当∠DAB=∠CBA时,且AD=BC,AB=AB,由“SAS”可证△ABC≌△BAD;当∠CAB=∠DBA时,不能判定△ABC≌△BAD;当∠C=∠D=90°时,且AD=BC,AB=AB,由“HL”可证Rt△ABC≌Rt△BAD;故选C.【题目点拨】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.8、C【分析】①正确.可以证明△ABE≌△ACF可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【题目详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE−∠BAC=∠CAF−∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.【题目点拨】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.9、A【分析】解分式方程,用含a的式子表示x,根据分式方程无解,得到x-4=0,得到关于a的方程,即可求解.【题目详解】解:,方程两边同时乘以(x-4)得,,由于方程无解,,,,故选:.【题目点拨】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.10、B【分析】高线AD可能在三角形的内部也可能在三角形的外部,分两种情况进行讨论,分别依据勾股定理即可求解.【题目详解】解:分两种情况:①如图在Rt△ABD中,∠ADB=90°,由勾股定理得,AB2=AD2+BD2∴172=82+BD2,解得BD=15cm,在Rt△ACD中,∠ADC=90°,由勾股定理得,AC2=AD2+CD2∴102=82+CD2,解得CD=6cm,∴BC=BD+CD=15+6=21cm;②如图由勾股定理求得BD=15cm,CD=6cm,∴BC=BD-CD=15-6=9cm.∴BC的长为21cm或9cm.故选B【题目点拨】当涉及到有关高的题目时,高的位置可能在三角形的内部,也可能在三角形的外部,所以分类讨论计算是此类题目的特征.二、填空题(每小题3分,共24分)11、40°【分析】根据等边对等角可得∠B=∠C,然后根据三角形外角的性质可得∠B+∠C=80°,从而求出∠B.【题目详解】∵AB=AC,∴∠B=∠C∵与∠BAC相邻的外角为80°,∴∠B+∠C=80°即2∠B=80°∴∠B=40°故答案为:40°.【题目点拨】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.12、【分析】观察图象可知,O2、O4、O6、...O2020在直线y=-x上,OO2=的周长=(1++2),OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),再根据点O2020的纵坐标是OO2020的一半,由此即可解决问题.【题目详解】解:观察图象可知,O2、O4、O6、...O2020在直线y=-x上,∵∠BAO=30°,AB⊥y轴,点B的坐标是(0,1),∴OO2=的周长=(1++2),∴OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),∵直线y=-x与x轴负半轴的交角为30°∴点O2020的纵坐标=OO2020=故答案为:【题目点拨】本题考查坐标与图形的变化、规律型:点的坐标、一次函数的性质等知识,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型.13、或【分析】首先根据矩形和对折的性质得出AC、AB、BC、AD,然后利用△ADE∽△ABC,得出AE,分类讨论即可得出点P坐标.【题目详解】∵矩形,,∴OA=BC=2,OC=AB=4∴由对折的性质,得△ADE是直角三角形,AD=CD=AC=,∠ADE=∠ABC=90°,∠DAE=∠BAC∴△ADE∽△ABC∴,即∴∵轴上有一点,使为等腰三角形,当点P在点A左侧时,如图所示:∴∴点P坐标为;当点P在点A右侧时,如图所示:∴∴点P坐标为;综上,点P的坐标是或故答案为:或.【题目点拨】此题主要考查利用相似三角形、等腰三角形的性质求点坐标,解题关键是求出AE的长度.14、①②④【分析】根据题意可知:MN是AC的垂直平分线,①正确;可得AD=CD,AE=CE,然后由CE∥AB,可证得CD∥AE,则四边形ADCE是平行四边形,然后得出,②正确;继而证得四边形ADCE是菱形,④正确.【题目详解】解:∵分别以A、C为圆心,以大于的长为半径在AC两边作弧,交于两点M、N,

∴MN是AC的垂直平分线,①正确;

∴AD=CD,AE=CE,

∴∠CAD=∠ACD,∠CAE=∠ACE,

∵CE∥AB,

∴∠CAD=∠ACE,

∴∠ACD=∠CAE,

∴CD∥AE,

∴四边形ADCE是平行四边形,∴,②正确;

∴四边形ADCE是菱形,④正确;∴,,∵,∴,又∵∴四边形是平行四边形,若四边形是菱形,即,若平分,即,题中未限定这两个条件,∴③⑤不一定正确,故答案为:①②④.【题目点拨】本题考查了作图−复杂作图,线段垂直平分线的性质,菱形的判定与性质,平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用.15、【分析】由已知方程没有实数根,得到根的判别式小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.【题目详解】解:∵方程x2-4x-m+1=0没有实数根,

∴△=16-4(-m+1)=4m+12<0,

解得:m<-1.

故答案为:m<-1【题目点拨】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.16、84或24【解题分析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.17、(a+b)2﹣(a﹣b)2=4ab【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【题目详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【题目点拨】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.18、【分析】首先提取公因式3,得到,再对多项式因式利用平方差公式进行分解,即可得到答案.【题目详解】==故答案是:【题目点拨】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.三、解答题(共66分)19、(1)该旅行社今年的有45人前来观看赛事;(2)故人均交通费最多为100元.【分析】(1)设该旅行社去年有x人前来观看赛事,根据“人数比去年增加了,总费用增加了3900元,人均费用反而下降了20元”列方程,求解即可;(2)设今年该旅行社本次费用中,人均交通费为x元,根据“其它费用不低于交通费的2倍”,列不等式求解即可.【题目详解】(1)设该旅行社去年有人前来观看赛事,根据题意,得:解得:.经检验:是原方程的解.所以,原方程的解为,故:.答:该旅行社今年的有45人前来观看赛事;(2)设今年该旅行社本次费用中,人均交通费为元,由题意得:解得:.故人均交通费最多为100元.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用.找准相等关系或不等关系是解答本题的关键.20、(1)x(x+2)(x-2);(2)(x+2)(x-6).【分析】(1)先提取公因式,再利用平方差公式,即可得到答案;(2)利用十字相乘法,即可分解因式.【题目详解】(1)x3-4x=x(x2-4)=x(x+2)(x-2);(2)x2-4x-12=(x+2)(x-6).【题目点拨】本题主要考查分解因式,掌握提取公因式法,公式法以及十字相乘法,是解题的关键.21、证明见解析.【解题分析】试题分析:由可得则可证明,因此可得试题解析:即,在和中,考点:三角形全等的判定.22、5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【题目详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:(m).答:灯带的最短长度为5m.【题目点拨】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.23、-1(x-1)2,当x=【解题分析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x的值,进行二次根式化简.试题解析:(x+1当x=2+1时,原式考点:1.分式的化简;2.二次根式化简.24、(1)见解析;(2)见解析;(3)①BD=AC理由见解析;见解析.【解题分析】(1)可以证明△BDE≌△ACE推出BD=AC,BD⊥AC.(2)如图2中,不发生变化.只要证明△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,由∠DEC=90°,推出∠ACE+∠EOC=90°,因为∠EOC=∠DOF,所以∠BDE+∠DOF=90°,可得∠DFO=180°-90°=90°,即可证明.(3)①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可.②能;由△BED≌△AEC可知,∠BDE=∠ACE,推出∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°即可解决问题.【题目详解】解:,,

理由是:延长BD交AC于F.

在和中

≌,

,,

不发生变化.

如图2,令AC、DE交点为O

理由:,

在和中

≌,

,,

;(3);

证明:和是等边三角形,

,,,,

在和中

≌,

.②夹角为.

解:如图3,令AC、BD交点为F,

由①知≌,

,即BD与AC所成的角的度数为或【题目点拨】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力,熟练掌握几何变换是解题的关键.25、见解析.【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论