内蒙古包头市哈林格尔中学2024届八上数学期末统考模拟试题含解析_第1页
内蒙古包头市哈林格尔中学2024届八上数学期末统考模拟试题含解析_第2页
内蒙古包头市哈林格尔中学2024届八上数学期末统考模拟试题含解析_第3页
内蒙古包头市哈林格尔中学2024届八上数学期末统考模拟试题含解析_第4页
内蒙古包头市哈林格尔中学2024届八上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古包头市哈林格尔中学2024届八上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个等腰三角形一边长等于6,一边长等于5,则它周长的为()A.16 B.17 C.18 D.16或172.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数()A.50° B.100° C.70° D.80°3.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF4.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8 B.9 C. D.105.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D.则∠D的度数为()A.15° B.17.5° C.20° D.22.5°6.如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=OD C.OC=OP D.∠CPO=∠DPO7.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥18.已知,则a+b+c的值是()A.2 B.4 C.±4 D.±29.如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°10.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.化简:_____.12.已知线段AB=8cm,点C在直线AB上,BC=3cm,则线段AC的长为________.13.如图,△ABC的面积为11cm1,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是_____cm1.14.一件工作,甲独做需小时完成,乙独做需小时完成,则甲、乙两人合作需的小时数是______.15.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____.16.把多项式进行分解因式,结果为________________.17.如图,已知,AB=BC,点D是射线AE上的一动点,当BD+CD最短时,的度数是_________.18.已知m2﹣mn=2,mn﹣n2=5,则3m2+2mn﹣5n2=________.三、解答题(共66分)19.(10分)阅读下列材料,然后解答问题:问题:分解因式:.解答:把带入多项式,发现此多项式的值为0,由此确定多项式中有因式,于是可设,分别求出,的值.再代入,就容易分解多项式,这种分解因式的方法叫做“试根法”.(1)求上述式子中,的值;(2)请你用“试根法”分解因式:.20.(6分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.21.(6分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”.高铁事业是“中国创造”的典范,它包括D字头的动车以及G字头的高铁,已知,由站到站高铁的平均速度是动车平均速度的倍,行驶相同的路程400千米.高铁比动车少用个小时.(1)求动车的平均速度;(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段站到站的动车票价为元/张,高铁票价为元/张,求动车票价为多少元/张时,高铁的性价比等于动车的性价比?22.(8分)如图,在中,,D在边AC上,且.如图1,填空______,______如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.求证:是等腰三角形;试写出线段AN、CE、CD之间的数量关系,并加以证明.23.(8分)如图,点A、、、在同一直线上,,AF∥DE,.求证:.24.(8分)如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图(1),若∠AOC=,求∠DOE的度数;(2)如图(2),将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.25.(10分)如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.26.(10分)阅读下面材料,完成(1)-(3)题:数学课上,老师出示了这样一道题:如图1,点是正边上一点以为边做正,连接.探究线段与的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段平分.”......老师:“保留原题条件,连接,是的延长线上一点,(如图2),如果,可以求出、、三条线段之间的数量关系.”(1)求证;(2)求证线段平分;(3)探究、、三条线段之间的数量关系,并加以证明.

参考答案一、选择题(每小题3分,共30分)1、D【分析】题目给出等腰三角形有两条边长为6和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】分两种情况讨论:①6为腰,5为底.∵5+6=11>6,∴5,6,6,能够成三角形,周长为:5+6+6=2;②5为腰,6为底.∵5+5=10>6,∴5,5,6,能够成三角形,周长为:5+5+6=1.综上所述:周长为1或2.故选:D.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答本题的关键.2、B【分析】三角形一个外角等于与它不相邻的两个内角的和,根据外角的性质即可得到结论.【题目详解】解:∵∠AEB=∠A+∠C=20°+50°=70°,∴∠ADB=∠AEB+∠B=70°+30°=100°.故选B.【题目点拨】本题主要考查了三角形的外角的性质,熟练掌握三角形外角的性质是解题的关键.3、A【解题分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.【题目详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF

∴Rt△ABC≌Rt△DEF

∴BC=EF,AC=DF

所以只有选项A是错误的,故选A.【题目点拨】本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.4、C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【题目详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=ABAC=BCAD,∴AD=.故选C.【题目点拨】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.5、A【分析】先根据角平分线的定义∠DCE=∠DCA,∠DBC=∠ABD=37.5°,再根据三角形外角性质得,再根据三角形内角和定理代入计算即可求解.【题目详解】解:∵AB=AC,∴∠ACB=∠ABC=75°,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4=37.5°,∵∠ACE=180°﹣∠ACB=105°,∴∠2=52.5°,∴∠BCD=75°+52.5°=127.5°,∴∠D=180°﹣∠3﹣∠BCD=15°.故选:A.【题目点拨】根据这角平分线的定义、根据三角形外角性质、三角形内角和定理知识点灵活应用6、C【分析】已知OP平分∠BOA,PC⊥OA,PD⊥OB,根据角平分线的性质定理可得PC=PD,在Rt△ODP和Rt△OCP中,利用HL定理判定Rt△ODP≌Rt△OCP,根据全等三角形的性质可得OC=OD,∠CPO=∠DPO,由此即可得结论.【题目详解】∵OP平分∠BOA,PC⊥OA,PD⊥OB,∴PC=PD(选项A正确),在Rt△ODP和Rt△OCP中,∴Rt△ODP≌Rt△OCP,∴OC=OD,∠CPO=∠DPO(选项B、D正确),只有选项C无法证明其正确.故选C.【题目点拨】本题考查了角平分线的性质定理及全等三角形的判定与性质,证明Rt△ODP≌Rt△OCP是解决本题的关键.7、D【分析】根据被开方式大于且等于零列式求解即可.【题目详解】由题意得x-1≥0,∴x≥1.故选D.【题目点拨】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.8、D【分析】先计算(a+b+c)2,再将代入即可求解.【题目详解】∵∴∴=4∴a+b+c=±2故选:D【题目点拨】本题考查了代数式的求值,其中用到了.9、D【解题分析】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.10、C【分析】根据轴对称图形的定义,逐一判断选项,即可.【题目详解】∵A是轴对称图形,∴A不符合题意,∵B是轴对称图形,∴B不符合题意,∵C不是轴对称图形,∴C符合题意,∵D是轴对称图形,∴D不符合题意,故选C.【题目点拨】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据算数平方根和立方根的运算法则计算即可.【题目详解】解:故答案为1.【题目点拨】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.12、5cm或11cm【分析】本题主要考查分类讨论的数学思想,因为C点可能在线段AB上,即在A、B两点之间,也可能在直线AB上,即在线段AB的延长线上,所以分情况讨论即可得到答案.【题目详解】①当C点在线段AB上时,C点在A、B两点之间,此时cm,∵线段cm,∴cm;②当C点在线段AB的延长线上时,此时cm,∵线段cm,∴cm;综上,线段AC的长为5cm或者11cm【题目点拨】本题主要考查一个分类讨论的数学思想,题目整体的难度不大,但解题过程中一定要认真的分析,避免遗漏可能出现的情况.13、2.【分析】延长CD交AB于E,依据△ACD≌△AED,即可得到CD=ED,进而得到S△BCD=S△BED,S△ACD=S△AED,据此可得S△ABD=S△AED+S△BED=S△ABC.【题目详解】解:如图所示,延长CD交AB于E,由题可得,AP平分∠BAC,∴∠CAD=∠EAD,又∵CD⊥AP,∴∠ADC=∠ADE=90°,又∵AD=AD,∴△ACD≌△AED(ASA),∴CD=ED,∴S△BCD=S△BED,S△ACD=S△AED,∴S△ABD=S△AED+S△BED=S△ABC=×11=2(cm1),故答案为:2.【题目点拨】本题考查的是作图−基本作图以及角平分线的定义,熟知角平分线的作法是解答此题的关键.14、【分析】设总工作量为1,根据甲独做a小时完成,乙独做b小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.【题目详解】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:∴甲、乙合做全部工作需:故填:.【题目点拨】此题考查了列代数式,解决问题的关键是读懂题意,根据关键描述语,找到所求的量的等量关系,当总工作量未知时,可设总工作量为1.15、﹣2b【解题分析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.16、2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【题目详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【题目点拨】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底.17、【分析】作CO⊥AE于点O,并延长CO,使,通过含30°直角三角形的性质可知是等边三角形,又因为AB=BC,根据等腰三角形三线合一即可得出,则答案可求.【题目详解】作CO⊥AE于点O,并延长CO,使,则AE是的垂直平分线,此时BD+CD最短∴是等边三角形∵AB=BC故答案为:90°.【题目点拨】本题主要考查含30°直角三角形的性质及等腰三角形三线合一,掌握含30°直角三角形的性质及等腰三角形三线合一是解题的关键.18、31【解题分析】试题解析:根据题意,故有∴原式=3(2+mm)+2mn−5(mn−5)=31.故答案为31.三、解答题(共66分)19、(1),;(2)【分析】(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;

(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【题目详解】解:(1)把带入多项式,发现此多项式的值为0,∴多项式中有因式,于是可设,得出:,∴,,∴,,(2)把代入,多项式的值为0,

∴多项式中有因式,于是可设,∴,,∴,,∴【题目点拨】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.20、证明见解析【解题分析】试题分析:由角平分线的定义可知:∠EAD=∠EAC,再由三角形的外角的性质可得∠EAD=∠B,然后利用平行线的判定定理可证明出结论.试题解析:∵AD平分∠EAC,∴∠EAD=∠EAC.又∵∠B=∠C,∠EAC=∠B+∠C,∴∠B=∠EAC.∴∠EAD=∠B.所以AD∥BC.考点:1.平行线的性质;(2)角平分线的定义;(3)三角形的外角性质.21、(1)动车的平均速度为240千米/时;(2)动车票价为250元/张时,高铁的性价比等于动车的性价比.【分析】(1)设动车的平均速度为千米/时,则高铁的平均速度为千米/时,利用行驶相同的路程400千米.高铁比动车少用个小时,列分式方程,解分式方程并检验,从而可得答案;(2)分别根据题意表示:高铁的性价比为,动车的性价比为,再列分式方程,解分式方程并检验,从而可得答案.【题目详解】解:(1)设动车的平均速度为千米/时,则高铁的平均速度为千米/时,由题意:,整理得,解得,经检验是所列分式方程的解.答:动车的平均速度为240千米/时.(2)∵高铁的性价比为,动车的性价比为,由题意得:,∴,∴,经检验,是所列方程的解.答:动车票价为250元/张时,高铁的性价比等于动车的性价比.【题目点拨】本题考查的是分式方程的应用,掌握利用分式方程解应用题的基本步骤,由题意确定相等关系是解题的关键,注意检验.22、(1)36,72;(2)①证明见解析;②CD=AN+CE,证明见解析.【分析】(1)根据题意可得△ABC,△BCD,△ABD都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=∠ABC=∠C,然后利用三角形的内角和即可得解;(2)①通过“角边角”证明△BNH≌△BEH,可得BN=BE,即可得证;②根据题意可得AN=AB﹣BN=AC﹣BE,CE=BE﹣BC,CD=AC﹣AD=AC﹣BD=AC﹣BC,则可得CD=AN+CE.【题目详解】解:(1)∵BD=BC,∴∠BDC=∠C,∵AB=AC,∴∠ABC=∠C,∴∠A=∠DBC,∵AD=BD,∴∠A=∠DBA,∴∠A=∠DBA=∠DBC=∠ABC=∠C,∵∠A+∠ABC+∠C=5∠A=180°,∴∠A=36°,∠C=72°;故答案为36,72;(2)①∵∠A=∠ABD=36°,∠B=∠C=72°,∴∠ABD=∠CBD=36°,∵BH⊥EN,∴∠BHN=∠EHB=90°,在△BNH与△BEH中,,∴△BNH≌△BEH(ASA),∴BN=BE,∴△BNE是等腰三角形;②CD=AN+CE,理由:由①知,BN=BE,∵AB=AC,∴AN=AB﹣BN=AC﹣BE,∵CE=BE﹣BC,∴AN+CE=AC﹣BC,∵CD=AC﹣AD=AC﹣BD=AC﹣BC,∴CD=AN+CE.【题目点拨】本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.23、详见解析.【分析】先根据平行线的性质求出∠A=∠D,再利用线段的加减证得AB=DC,即可用“SAS”证明三角形全等.【题目详解】∵AF∥DE∴∠A=∠D∵AC=DB∴AC-DB=DB-BC即AB=DC在△ABF和△DCE中,∵∴△ABF≌△DCE【题目点拨】本题考查的是三角形全等的判定,掌握三角形的各个判定定理是关键.24、(1)20°;(2)当∠AOC的度数是60°或108°时,∠COE=2∠DOB【分析】(1)依据邻补角的定义以及角平分线的定义,即可得到∠COE的度数,进而得出∠DOE的度数;(2)设∠AOC=α,则∠BOC=180°-α,依据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论