




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西南宁四十九中学八上数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在等腰三角形ABC中,BA=BC,∠ABC=120°,D为AC边的中点,若BC=6,则BD的长为()A.3 B.4 C.6 D.82.下列描述不能确定具体位置的是()A.某影剧院排号 B.新华东路号C.北纬度,东经度 D.南偏西度3.如图,,平分,如果射线上的点满足是等腰三角形,那么的度数不可能为()A.120° B.75° C.60° D.30°4.某教师招聘考试分笔试和面试两个环节进行,其中笔试按60%、面试按40%计算加权平均数作为最终的总成绩.吴老师笔试成绩为90分,面试成绩为85分,那么吴老师的总成绩为()A.85分 B.86分 C.87分 D.88分5.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a) B.x2+a2+2axC.(x-a)(x-a) D.(x+a)a+(x+a)x6.如图,在正方形内,以为边作等边三角形,连接并延长交于,则下列结论不正确的是()A. B. C. D.7.如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为()A.10cm B.20cm C.5cm D.不能确定8.如图,在四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连结BE,且BE也平分∠ABC,则以下的命题中正确的个数是()①BC+AD=AB;②E为CD中点③∠AEB=90°;④S△ABE=S四边形ABCDA.1 B.2 C.3 D.49.如图,在数轴上,点A表示的数是,点B,C表示的数是两个连续的整数,则这两个整数为()A.-5和-4 B.-4和-3 C.3和4 D.4和510.一个多边形截去一个角后,形成另一个多边形的内角和为,那么原多边形的边数为()A.5 B.5或6 C.6或7或8 D.7或8或911.在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个12.下列计算正确的是()A.a3+a2=a5 B.a6÷(﹣a3)=﹣a3C.(﹣a2)3=a6 D.二、填空题(每题4分,共24分)13.当a=2018时,分式的值是_____.14.若一个多边形的内角和是900º,则这个多边形是边形.15.如图在中,是的中线,是上的动点,是边上动点,则的最小值为______________.16.一次函数与的部分自变量和对应函数值如下表:0123210123-3-113则关于的不等式的解集是______.17.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6cm,BC=8cm,求阴影部分的面积.18.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么4※8=________.三、解答题(共78分)19.(8分)如图,四边形中,,,,是四边形内一点,是四边形外一点,且,,(1)求证:;(2)求证:.20.(8分)解分式方程21.(8分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点)(1)若∠CFE=119°,PG交∠FEB的平分线EG于点G,∠APG=150°,则∠G的大小为.(2)如图2,连接PF.将△EPF折叠,顶点E落在点Q处.①若∠PEF=48°,点Q刚好落在其中的一条平行线上,请直接写出∠EFP的大小为.②若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.22.(10分)如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含ab的式子表示)(2)若,求图2中的空白正方形的面积.(3)观察图2,用等式表示出,ab和的数量关系.23.(10分)阅读以下内容解答下列问题.七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是.(2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”.①求式子中m、n的值;②用“试根法”分解多项式x3+5x2+8x+1.24.(10分)解方程或不等式组:(1);(2)25.(12分)某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?26.如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【题目详解】解:∵BA=BC,∠ABC=120°,∴∠C=∠A=30°,∵D为AC边的中点,∴BD⊥AC,∵BC=6,∴BD=BC=3,故选:A.【题目点拨】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.2、D【解题分析】根据平面内的点与有序实数对一一对应分别对各选项进行判断.【题目详解】解:A、某影剧院排号能确定具体位置;B、新华东路号,能确定具体位置;C、北纬度,东经度,能确定具体位置;D、南偏西度不能确定具体位置;故选D.【题目点拨】本题考查了利用坐标确定位置,是基础题,明确位置的确定需要两个因素是解题的关键.3、C【分析】分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC是度数即可得到答案.【题目详解】∵,平分,∠AOC=30,当OC=CE时,∠OEC=∠AOC=30,当OE=CE时,∠OEC=180120,当OC=OE时,∠OEC=(180)=75,∴∠OEC的度数不能是60°,故选:C.【题目点拨】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.4、D【分析】根据加权平均数的计算方法进行计算即可得解.【题目详解】依题意得:分,故选:D.【题目点拨】本题主要考查了加权平均数,熟练掌握加权平均数得解法是解决本题的关键.5、C【题目详解】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2=(x+a)a+(x+a)x,故选C.6、D【分析】根据四边形ABCD是正方形,△EMC是等边三角形,得出∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,再计算角度即可;通过做辅助线MD,得出MA=MD,MD=MN,从而得出AM=MN.【题目详解】如图,连接DM,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠ADC=90°,∵△EMC是等边三角形,∴BM=BC=CM,∠EMC=∠MBC=∠MCB=60°,∴∠ABM=∠MCN=30°,∵BA=BM,MC=CD,∴∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,∴∠MAD=∠MDA=15°,故A正确;∴MA=MD,∴∠DMN=∠MAD+∠ADM=30°,∴∠CMN=∠CMD-∠DMN=45°,故B正确;∵∠MDN=∠AND=75°∴MD=MN∴AM=MN,故C正确;∵∠CMN=45°,∠MCN=30°,∴,故D错误,故选D.【题目点拨】本题考正方形的性质、等边三角形的性质等知识,灵活应用正方形以及等边三角形的性质,通过计算角度得出等腰三角形是关键.7、A【解题分析】解:∵的两边BC和AC的垂直平分线分别交AB于D、E,∵边AB长为10cm,∴的周长为:10cm.故选A.【题目点拨】本题考查线段的垂直平分线上的点到线段两个端点的距离相等.8、D【分析】在AB上截取AF=AD.证明△AED≌△AEF,△BEC≌△BEF.可证4个结论都正确.【题目详解】解:在AB上截取AF=AD.则△AED≌△AEF(SAS).∴∠AFE=∠D.∵AD∥BC,∴∠D+∠C=180°.∴∠C=∠BFE.∴△BEC≌△BEF(AAS).∴①BC=BF,故AB=BC+AD;②CE=EF=ED,即E是CD中点;③∠AEB=∠AEF+∠BEF=∠DEF+∠CEF=×180°=90°;④S△AEF=S△AED,S△BEF=S△BEC,∴S△AEB=S四边形BCEF+S四边形EFAD=S四边形ABCD.故选D.【题目点拨】此题考查全等三角形的判定与性质,运用了截取法构造全等三角形解决问题,难度中等.9、B【分析】先估算的大小,再求出﹣的大小即可判断.【题目详解】∵9<13<16,∴3<<4,∴﹣4<﹣<﹣3,故选:B.【题目点拨】本题考查了实数与数轴,解题关键是会估算二次根式的大小.10、C【分析】利用多边形内角和公式:,得出截后的是几边形,分以下三种情况进行讨论:(1)不经过顶点,(2)经过一个顶点,(3)经过2个顶点,即可得出结果.【题目详解】解:设截后的多边形为边形解得:(1)顶点剪,则比原来边数多1(2)过一个顶点剪,则和原来的边数相同(3)过两个顶点剪,则比原来的边数少1则原多边形的边数为6或7或8故选:C.【题目点拨】本题主要考查的是多边形的内角和公式,正确的掌握多边形的内角和公式以及分情况进行讨论是解题的关键.11、B【分析】根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【题目详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.【题目点拨】此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.12、B【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、分式的加减运算法则化简得出答案.【题目详解】解:A、,无法合并;B、,正确;C、,故此选项错误;D、,故此选项错误;故选:B.【题目点拨】此题主要考查了分式的加减运算、同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.二、填空题(每题4分,共24分)13、1【分析】首先化简分式,然后把a=2018代入化简后的算式,求出算式的值是多少即可.【题目详解】当a=2018时,,=,=,=,=a+1,=2018+1,=1.故答案为1.【题目点拨】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.14、七【分析】根据多边形的内角和公式,列式求解即可.【题目详解】设这个多边形是边形,根据题意得,,解得.故答案为.【题目点拨】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15、【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据等腰三角形“三线合一”得出BD的长和AD⊥BC,再利用勾股定理求出AD,利用“等面积法”结合垂线段最短进一步求出最小值即可.【题目详解】如图,作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是△ABC的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理可得:AD=,∴,∴,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短可得:CM≥CN,即:CF+EF≥,∴CF+EF的最小值为:,故答案为:.【题目点拨】本题主要考查了几何图形中最短路线问题,关键是熟练运用轴对称性质找出相应的线段进行求解.16、【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【题目详解】根据表可得y1=kx+b中y随x的增大而减小;
y1=mx+n中y随x的增大而增大.且两个函数的交点坐标是(1,1).
则当x<1时,kx+b>mx+n,
故答案为:x<1.【题目点拨】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.17、cm2.【解题分析】【试题分析】因为四边形ABCD是长方形,根据矩形的性质得:∠B=∠D=90°,AB=CD.由折叠的性质可知∠DAC=∠EAC,因为AD//BC,根据平行线的性质,得∠DAC=∠ECA,根据等量代换得,∠EAC=∠ECA,根据等角对等边,得AE=CE.设AE=xcm,在Rt△ABE中,利用勾股定理得,AB2+BE2=AE2,即62+(8-x)2=x2,解得x=,∴CE=AE=cm.∴S阴影=·CE·AB=××6=(cm2).【试题解析】∵四边形ABCD是长方形,∴∠B=∠D=90°,AB=CD.由折叠的性质可知可知∠DAC=∠EAC,∵AD//BC,∴∠DAC=∠ECA,∴∠EAC=∠ECA,∴AE=CE.设AE=xcm,在Rt△ABE中,AB2+BE2=AE2,即62+(8-x)2=x2,∴x=,∴CE=AE=cm.∴S阴影=·CE·AB=××6=(cm2).故答案为cm2.【方法点睛】本题目是一道关于勾股定理的运用问题,求阴影部分的面积,重点是求底边AE或者CE,解决途径是利用折叠的性质,对边平行的性质,得出△ACE是等腰三角形,进而根据AE和BE的数量关系,在Rt△ABE中利用勾股定理即可.18、【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【题目详解】解:根据题意可得4※8=故答案为:.【题目点拨】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析【分析】(1)证明即可得到结论;(2)证明即可.【题目详解】(1)延长、交于点.,,.(2),;,,,同理可得:.又,,.【题目点拨】此题主要考查了平行线的判定以及全等三角形的判定与性质,灵活作出辅助线是解题的关键.20、【分析】先将方程两边同乘最简公分母,将分式方程化为整式方程求解,最后验根即可.【题目详解】解:方程两边同乘最简公分母,得:去括号整理得:解得:经检验,是原分式方程的解.【题目点拨】本题考查解分式方程,找到最简公分母将分式方程转化为整式方程是关键,注意分式方程最后需要验根.21、(1)29.5°;(2)①42°或66°;②35°或63°.【分析】(1)根据平行线的性质和三角形的内角和即可得到结论;(2)①Ⅰ、当点Q落在AB上时,利用三角形内角和定理计算即可.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,利用平行线的性质,三角形的内角和定理计算即可.②分两种情形:Ⅰ、当点Q在平行线AB,CD之间时.Ⅱ、当点Q在CD下方时,分别构建方程即可解决问题.【题目详解】(1)∵直线AB∥CD,∴∠BEF=∠CFE=119°,∠PEF=180°﹣∠CFE=61°,∵EG平分∠BEF,∴∠FEG=∠BEF=59.5°,∵∠APG=150°,∴∠EPF=30°,∴∠G=180°﹣30°﹣61°﹣59.5°=29.5°;故答案为:29.5°;(2)①Ⅰ、当点Q落在AB上时,易证PF⊥AB,可得∠EPF=90°,∴∠EFP=90°﹣∠PEF=90°﹣48°=42°.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,∵AB∥CD,∴∠EPQ+∠PQF=180°,∴∠EPQ=132°,∵∠EPF=∠QPF,∴∠EPF=×132°=66°,∴∠EFP=180°﹣48°﹣66°=66°.综上所述,满足条件的∠EFP的值为42°或66°,故答案为:42°或66°.②Ⅰ、当点Q在平行线AB,CD之间时.设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.Ⅱ、当点Q在CD下方时,设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=x,∴75°+x+x=180°,解得x=63°,∴∠EFP=63°.【题目点拨】本题考查了三角形的角度问题,掌握平行线的性质和三角形的内角和定理是解题的关键.22、(1)2a-b;(2)25;(3)8ab.【分析】(1)根据长方形的长是2a,宽是b,可以得到小正方形的边长是长与宽的的差;(2)从图中可以看出小正方形的面积=大正方形的面积-4个小长方形的面积,再根据2a+b=7求出小正方形的面积;(3)利用平方差公式得到:,ab和之间的关系.【题目详解】解:(1)图2的空白部分的边长是:2a-b;(2)由图可知,小正方形的面积=大正方形的面积-4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴小正方形的面积=;(3)由图2可以看出,大正方形的面积=空白部分的正方形的面积+四个小长方形的面积即:.考点:1.完全平方公式;2.平方差公式.23、(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2.【分析】(1)根据材料回答即可;(2)①分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值;②把x=﹣1代入x3+5x2+8x+1,得出多项式含有因式(x+1),再利用①中方法解出a和b,即可代入原式进行分解.【题目详解】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次,故答案为:降次;(2)①在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,令x=0,可得:,解得:n=-5,令x=1,可得:,解得:m=﹣3,故答案为:m=﹣3,n=﹣5;②把x=﹣1代入x3+5x2+8x+1,得x3+5x2+8x+1=0,则多项式x3+5x2+8x+1可分解为(x+1)(x2+ax+b)的形式,同①方法可得:a=1,b=1,所以x3+5x2+8x+1=(x+1)(x2+1x+1),=(x+1)(x+2)2.【题目点拨】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答.24、(1);(2)【解题分析】(1)分式方程去分母转化为整式方程,求出整式方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市景观照明节能改造工程规划报告2025
- 数字文化产业商业模式创新趋势报告:2025年数字文化产业与城市更新
- 2025年工业互联网平台自然语言处理技术在智能区块链中的应用报告
- 成就DBA职业生涯
- 教育质量认证体系:2025年行业应用与标准化实施效果评价策略研究创新实施研究创新报告
- 2025年医疗健康产业区域发展差异与协同策略研究报告
- 2025年工业互联网平台5G通信模组适配性成本效益分析报告
- 数字化转型下2025年文化产业园产业集聚策略与服务升级报告
- java八股文面试题及答案
- java linux面试题及答案
- 酒店筹开期操作手册(业主代表小组适用)
- 城市生活垃圾卫生填埋场运行管理培训
- 2023年《早》舒淇早期古装掰全照原创
- 部编版六年级语文下册根据语境写词语(小升初归类练习)
- 人工智能之知识库
- 张哲华鑫仔小品《警察和我》台词剧本手稿
- 中等职业学校英语课程标准(2020年版)(word精排版)
- 毕业生就业推荐表word模板
- 南京市特种设备安全监督检验研究院公开招考5名编外工作人员模拟检测试卷【共1000题含答案解析】
- 2023年八年级生物学业水平考试复习试卷
- YY/T 1685-2020气动脉冲振荡排痰设备
评论
0/150
提交评论