一种多路输出反激式开关电源的设计_第1页
一种多路输出反激式开关电源的设计_第2页
一种多路输出反激式开关电源的设计_第3页
一种多路输出反激式开关电源的设计_第4页
一种多路输出反激式开关电源的设计_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一种多路输出反激式开关电源的设计

0高效的多输出反激电源近年来,随着能源电子技术的发展,各个领域的电源体积、重量和效率要求越来越高。以电流型PWM(脉宽调制)控制器为核心的高频开关电源由于具有体积小、重量轻、效率高、线路简洁、可靠性高以及具有较强的自动均衡各路输出负载的能力等优点,非常适合用于中小功率的场合。本文给出了一种用于电机控制的新型多输出反激电源的设计。该设计基于UC3844高性能电流型PWM控制器。电压反馈和电流反馈双闭环串级结构,使输出电压能够很好地稳定,电压调整率和负载调整率都较高。光耦H11A1和三端可调稳压管TL431配合控制大大提高了瞬态响应速度。RCD(剩余电流保护装置)吸收回路和开关管保护电路能很好地消除漏感,使元件稳定可靠地工作。1电力5m控制的原理和优势1.1氧漂系统中小型企业电流型PWM控制系统框图如图1所示。该系统采用电流电压双闭环串级控制结构,内环是电流环,外环是电压环。控制原理是:给定的电压Ug与从输出反馈回的电压Ur进行比较,得到的电压误差经电压调节器输出作为另一个给定的电压信号Ue。该信号与经电阻采样反映电流变化的信号Us进行比较,输出一个占空比可调节的PWM脉冲信号,从而使得输出的电压信号V0保持恒定。1.2控制的优势电流型PWM控制的优点如下:a)电压调整率好。输入电压的变化立即引起电感电流的变化,电感电流的变化立即反映到电流控制回路而被抑制,不像电压控制要经过输出电压反馈到误差放大器,然后再调节的复杂过程,所以响应快。如果输入电压的变化是持续的,电压反馈环也起作用,因而可以达到较高的线形调整率。b)负载调整率好。由于电压误差放大器可专门用于控制占空比,以适应负载变化造成的输出电压的变化,因而可大大改善负载调整率。c)系统稳定性好。从控制理论的角度讲,电压控制单闭环系统是一个无条件的二阶稳定系统。而电流控制双闭环系统是一个无条件的一阶稳定系统,系统稳定性好。2u3000电流、ct和u20093.UC3844是电流型单端输出式PWM控制芯片,它主要由高频振荡、误差比较、电流取样比较、脉宽调制锁存、欠压锁定、过压保护等功能电路组成。图2为UC3844内部结构框图和引脚图。引脚1为误差放大器补偿端,引脚2接电压反馈信号,引脚3接电流检测信号,引脚4外接时间电阻RT及CT用来设置振荡器的频率,引脚5为接地端,引脚6为推挽输出端,可提供大电流图腾柱输出,引脚7接芯片工作电压,引脚8提供5V的基准电压。UC3844的工作原理是:反馈电压和2.5V基准电压之差,经误差放大器E/A放大后作为门限电压,与反馈电流经采样后的电压一起送到电流感应比较器。当电流取样电压超过门限电压后,比较器输出高电平触发RS触发器,然后经或非门输出低电平,关断功率管,并保持这种状态直至OSC(振荡器)输出脉冲到触发器和或非门为止。这段时间的长短由OSC输出脉冲宽度决定。PWM信号的上升沿由OSC决定,下降沿由功率开关管电流和输出电压共同决定。反转触发器限制PWM的占空比调节范围在0~50%之内。3主要道路规划3.1反激式变换电路图3所示多路输出开关电源是专为电机控制设计的。主电路采用单端反激式变换电路。220V交流输入电压经桥式整流、电容滤波变为直流后,供给单端反激式变换电路。反激式变换电路结构具有电气隔离、易于多路输出、外接元器件少、可靠性高等优点。其中12V/0.2A、24V/1A、±15V/0.5A的输出绕组分别为UC3844、继电器和其他模拟电路供电。5V/2A输出是重要的一路输出信号,它除了用于稳压外,还为电机控制用的数字板电源提供5V电源。3.2反激式变压器交流电压up1及测点参数单端反激式变压器可工作在CCM(电流连续模式)和DCM(电流断续模式)。在不同的工作模式下,变压器的设计是不一样的。这里将变压器设计在工作于CCM模式下。根据开关管导通时的伏秒数应等于关断时的伏秒数,可推导出原边匝数与副边匝数比为:n=α1-α⋅UΡ1UΡ2n=α1−α⋅UP1UP2式中:α为额定工作状态时的工作比;UP1为变压器输入电压,220V交流输入电压经整流后得到约300V高压,所以UP1取300V;UP2为5V绕组输出电压。单端反激式开关电源变压器的临界电感为:Lmin=[UΡ1nUΡ2UΡ1+nUΡ2]2⋅Τ2Ρ0×10-6Lmin=[UP1nUP2UP1+nUP2]2⋅T2P0×10−6式中:Lmin为临界电感;T为UC3844的工作周期。通常,反激式开关电源变压器初级电感LP1≥Lmin。高频变压器磁心气隙为:lg=0.4πLΡ1Ι2Ρ1AeΔBmlg=0.4πLP1I2P1AeΔBm式中:lg为磁心气隙长度(mm);ΔBm为脉冲磁感应增量(T);ΔBm=0.21T。IP1为变压器初级峰值电流:ΙΡ1=(UΡ1+nUΡ2)Ρ0UΡ1nUΡ2+Τ2LΡ1⋅UΡ1nUΡ2UΡ1+nUΡ2×10-6IP1=(UP1+nUP2)P0UP1nUP2+T2LP1⋅UP1nUP2UP1+nUP2×10−6原边绕组匝数可由下列公式计算:Ν1=ΔBmlg0.4πΙΡ1×104然后根据公式N2=N1/n,求出5V绕组匝数,进而求得每匝反激电压为U′=5v/N2。其他几路次级绕组的匝数可根据Ni=UPi/U′确定,UPi、Ni为相应的次级绕组输出电压和匝数。3.3泄漏检测电路1无源钳位电路消除电路在反激变换器中,由于高频变压器兼作储能电感用,因而气隙大,漏感亦较大。一方面,会产生开关管关断时很高的电压尖峰,另一方面,整流二极管反向恢复会引起开关管开通时的电流尖峰。为了解决这个问题,本设计采用R18、C36、D15构成的无源钳位电路消除电路中存在的漏感。该电路简单方便,容易实现,在小功率的情况下能达到较好的抑制效果。开关管Q1关断时,变压器漏感能量转移到电容C36上,然后电阻R18将这部分能量消耗掉。Q1导通过程中,C36没有放电到0,那么Q1的漏源电压上升的一段时间内,电容不起作用,有利于反激过冲。2续流电极的确定R16、D14、C35构成的开关管保护电路可以消除开关管漏源间产生的反峰电压。Q1关断时,Q1上电流下降,变压器漏感会阻止电流减小,一部分电流继续流过Q1,另一部分通过D14对C35充电。C35的存在减缓了漏源间电压的上升。C35越大,漏源间电压上升得越慢,这样可以降低开关管的损耗。在选用续流二极管D14时选择了肖特基二极管。这种二极管在峰值电流为3A时,导通电压通常很小。4控制线路设计4.1u394an正常工作时电压稳定测试R3为UC3844AN的启动电阻,UC3844AN的启动电压为16V,当引脚7的输入电压高于34V时,UC3844AN内部的稳压管将电压稳定在34V。芯片启动后,变压器有耦合输出,12V供电绕组有12V输出,由D5、D6、D7、C26、C23、C24构成的电路为UC3844AN提供正常工作时的电压。UC3844芯片引脚4和引脚8之间接时间电阻R12,引脚4和引脚5接时间电容C33,引脚8的5V基准电压经R12给C33充电,振荡工作频率f=1.72/(C33R12)(kHz),C33单位为μF,R12单位为kΩ。4.2输出通过三端可调稳压管tla491和光催化作用,u3949引脚在PWM双环控制系统中,电压环的作用是稳定输出电压,在输入电压或负载扰动下保持输出稳定。图3左下角电路为5V电压反馈电路。变压器5V输出通过三端可调稳压管TL431和光耦H11A1以电压反馈的形式反馈到UC3844的引脚2。当5V输出绕组的电压大于5V时,加在三端可调稳压管上的参考电压升高,流过H11A1中二极管的电流增大,三极管上的电流也相应地增大,即UC3844的引脚2电压升高,误差放大器输出电压降低,占空比减小,流过开关管的峰值电流减小,使输出电压降低。5V输出电压小于5V时的情况与上述过程相反。4.3与电流比较器的其它电压比较采样电阻R17上的电压反映了变压器T1原边绕组上的电流大小。当开关管Q1导通时,R17上的电流逐渐增大,压降增加,通过R13将该电压反馈到芯片引脚3,该电压与电流比较器的另一端进行比较,当此压降达到一定值时,锁存器复位,开关管截止。正常运行时,R17的峰值电压由误差放大器控制,满足:Ι=Ue-1.43R17式中:I为检测电流,Ue为误差放大器的输出电压。UC3844的内部电流感应比较器反向输入端钳位为1V,因此最大限制电流为Imax=1/R17。为了抑制开关管Q1导通时产生的电流尖峰,该电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论