




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
时间:TIME\@"yyyy'年'M'月'd'日'"2022年3月29日学海无涯页码:第1-页共1页梯度热处理快速优化Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn合金获得高强高韧性能的微观组织1Introduction
Metastableβtitaniumalloyhasgreatpotentialapplicationinaerospaceandbiomedicalindustriesduetotheirhighspecificstrength,goodcombinationofstrengthandductility[1-2].Thedevelopmentofaerospaceindustryrequireshigherperformanceoftitaniumalloy,facilitatingthedesignanddevelopmentofnewβ-Tialloys[3-6],Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloyisoneofthem.Asahighstrengthmetastableβ-Tialloy,thestrengthandductilityisverysensitivetomicrostructuremainlydependingonsolutionandageingtreatment.Itisakeywaytotailoringmechanicalpropertiesthroughestablishingtherelationshipbetweenheattreatmentandmicrostructures.
Previousstudiesfoundthatalthoughtheductilityofmetastableβtitaniumalloysignificantlydependsonthesizeofβ-grainandprimaryαphase,strengthconsiderablydependsonthemorphology,sizeandvolumefractionofαsphase[7-9].Therefore,controllingthesize,morphology,anddistributionofαphasethroughheattreatmentisoneofimportantwaysfortailoringmechanicalpropertiesofmetastableβ-Tialloys[4,10-12].Establishingtherelationshipbetweenheattreatmentparametersandmicrostructureofmetastableβ-Tialloyisarelativelycomplexprocess,includingannealing,solutionandageing.Afterdifferentsolutionandageingtreatments,themicrostructureofthealloycouldbetailoredtoequiaxed,lamellar,bimodalandevenmorehierarchicalfeatures[13-14].Besides,themorphologyandvolumefractionoftheprimaryαphase,sizeandspacingofthesecondaryphasearealsoverysensitivetosolutionandageing.InTi-5Al-4Zr-8Mo-7Valloy,αswith51nminwidthand85nminspacingresultedinultimatestrengthof1390MPawithelongationof10.3%afterthesolutiontreatmentat800℃andageingat570℃for8h[9].RENetal[15]achievedgoodcombinationofstrengthandductilityinTi5231alloy,ultimatestrengthof1238MPaandelongationof20%,owingtothemicrostructureconsistedof13vol%ofαpandαsof187nminspacingaftersolutiontreatmentat830℃andageingat620℃for6h.Throughchangingthesolutionandageingtemperature,thesizeandfractionofbothαpandαsphasescouldbetailoredforachievinggoodcombinationofstrengthandductility,suchasTi7333[16-17],Ti1023[18]andTi55531[11,19-20]alloys.
Inrecentyears,someeffortshavebeenmadetotakeadvantageofhigh-throughputtechnologiestoacquireamountsofmicrostructurefeaturesrapidlyinordertotailorandoptimizemicrostructureandmechanicalpropertiesoftitaniumalloy.AFONSOetal[21]obtaineddifferentcoolingratesforTi-20NballoybyJorminyquenchingtesttostudytherelationshipamongcoolingrates,differentmicrostructuresandmechanicalproperties.XUetal[22]accuratelydeterminedthepseudo-spinodaldecompositiontemperatureofTi5553alloythroughgradientheattreatmentandobtainedahighvolumefractionofsmallsizeαphasebypseudo-spinodaldecomposition,resultinginaveryhighstrengtheningeffect.Thecontinuouscomponentgradientcanbeachievedbydiffusionmultipleexperiment,andtheeffectofcomponentsonperformancecanbedeterminedconvenientlyandaccurately.Bythismethod,WUetal[23]studiedtheeffectofMoelementandVcontentonthemicrostructureofTi-Mo-Valloyingradientcompositionbyhigh-throughputmultiplesample,anddesignedTi-6Mo-3Valloywithultrafineαphase,whichhasyieldstrengthof1411MPaandelongationof6.5%.ZHANGetal[24]rapidlyestablishedtherelastionshipof“composition-microstructure-elasticmodulus”ofTi-Nb-Zrsystemandbulidtheelasticmodulusandhardnessdatabase.
Inthisstudy,aconvenienthigh-throughputheattreatmentapproachwasdeveloped,whichcouldcreatetemperaturegradientforsolutionandageingtreatmentinonlyonesample.TheageinghardeningbehaviorandmicrostructuralevolutionofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloywererapidlystudiedforoptimizingmicrostructureforimprovingstrengthandductility.
2Experimental
2.1Materials
Theas-receivedalloywasforgedrodsuppliedbytheBaotaiGroupCo.,Ltd.ThechemicalcompositionofthealloyislistedinTable1.TheinitialmicrostructureshowninFigure1consistsoffinebimodalα+βmicrostructurewithapproximately14vol%equiaxedαpphaseandfinedispersedlamellarαsphase,andtheaveragesizeofαpphaseisabout2-3μm.
Table1ThechemicalcompositionofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloy(wt%)
AlVMoCrNbFeZrSnOTi
3.891.226.782.782.010.0481.051.000.107Bal.
下载:导出CSV
Figure1SEMimageofas-receivedalloy
下载:原图|高精图|低精图
2.2Preparationofgradientsample
Around-rodsampleof10mmindiameterand92mminlengthwaswire-cutfromtheas-receivedalloy.Figure2showstheschematicofthegradientheattreatment.Thetubefurnacewasusedforgradientheattreatmentwithaprecisely-programmabletemperature-controlledzoneinthemiddlepart.Thetemperaturewassetat950℃,anddecreasedgraduallyfrom950℃to25℃inthestokehole.Thepositionofgradienttemperaturewastestedusingstandardsamplebythermocoupleaccurately,asshowninFigure2.Inordertoachieveaccurategradienttemperature,nineequallyspacedholeswerepunchedinthesamplebyelectricsparkdrillingwith10-mmspacing,andthenthethermocouplewireswereplacedintheholes.Topreventoxidationofthesampleduringgradientheattreatment,Cr2O3powderwasmixedwithwaterandthenevenlycoatedonthesamplesurfacebeforegradientsolutiontreatment.Afterwaterevaporated,thesamplewasputinaporcelainboatandplacedtothegradientpositioninthefurnace.
Figure2Schematicillustrationofgradientheattreatedsamplepreparation
下载:原图|高精图|低精图
AscanbeseeninTable2,themeasuredtemperaturefromthermocouplewere746,770,795,819,844,865,885,900and909℃,respectively.Aftergradientsolutionfor2h,thesamplewasquenchedinwaterimmediately.Theβ-transustemperatureofthealloyisabout(845±5)℃.Thegradientsolutioninα+βandβphaseregionscouldbeobtainedinonlyonesample.Then,thequenchedgradientsolutionsamplewascutintofouridenticalsheets:oneofthemwasnotfurtheraged,andtheotherthreewereagedfor8hat450,550and600℃,respectively.Beforeageing,Cr2O3wasalsoevenlycoatedoneachsampleasananti-oxidationlayer.
Table2Gradienttemperaturemeasuredbythermocouplewires
PositionTemperature/℃
TC1746
TC2770
TC3795
TC4819
TC5844
TC6865
TC7885
TC8900
TC9909
下载:导出CSV
2.3Microstructureobservation
ThemicrostructureofgradientsolutiontreatedandagedsampleswereobservedusingMIRA2LMHscanningelectronmicroscope(SEM)andTecnaiG2transmissionelectronmicroscope(TEM)operatedat200kV.ForTEMobservation,thethinfoilswerepreparedbyatwin-jetelectropolishingtechniqueusingKroll’sreagent,whichcomposedof5%perchlorate,35%butylalcoholand60%methanol.Theaveragegrainsizeandvolumefractionofαpphase,thethicknessandlengthofαsphaseweremeasuredstatisticallybyImageJsoftware.
2.4Mechanicalpropertytesting
Hardnesstestingwasconductedon200HBVS-30Vickershardnesstesterwith9.8Nload.Eachgroupofdatahassevenhardnessvaluesandtheaveragevaluewasused.TensilepropertiesweretestedaccordingtoGB/T228—2022standard.Beforeheattreatment,sampleswerecutintotheround-rodshapefirstly,afterheattreatment,theround-rodsamplewasprocessedintoastandard25-mmlongtensilespecimen5mmindiameter.ThetensilespecimenisshowninFigure3.TensiletestswereconductedonMTSLandmarkatroomtemperaturewithstrainrateof10-3s-1,andastrainextensometerwasadoptedtoensuretheaccuracyofstress-straindatameasurement.
Figure3Thedimensionsoftensilespecimen(Unit:mm)
下载:原图|高精图|低精图
3Results
3.1Microstructureofthesolutiontreatedalloy
Figure4showsthemicrostructureofgradientsolutiontreatedsample.Thevolumefractionofαpdecreaseswiththeincreaseofsolutiontemperature,from30%at746℃to3%at819℃.Whenthesolutiontemperaturewasabovetheβ-transustemperature,noαpphasewasobservedat844℃,whichmeansthattheαphasetransformedtoβbetween819and844℃.Whenthesamplewassolutiontreatedat746℃and770℃,theprimaryαphasehadtwodifferentmorphologies:globularαphase(αp)withdiameterof1-5µmandrod-shapedαphase(αr)withwidthof0.1-0.4µmandlengthof0.5-4µm.InFigures4(c)and(d),onlytheglobularαphasecouldbeobservedneartoβ-transustemperature.
Figure4SEMimagesofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloysolutiontreatedatdifferenttemperatures:(a)746℃;(b)770℃;(c)795℃;(d)819℃;(e)844℃(Thenumberinthetoprightcornershowsthevolumefractionofαpintheβmatrix)
下载:原图|高精图|低精图
Figure5showstheTEMimagesof900℃and746℃solutiontreatedsampleinordertoobservewhethertheathermalωphase(ωath)precipitatedduringquenching.Someperiodicstriationswereobservedinthebright-fieldTEMimages.Insertedselectedareaelectrondiffractionpatternsshowthat,otherthanthefaintdiffusescattering,therearenoreflectionsatthe1/3and2/3(112)βpositions,whichcouldindicatetheexistenceofωathphase.Thistypeofperiodicstriationwasalsoobservedintheothermetastabletitaniumalloys[25-27],showingthespinodaldecompositionfeature.Whenthetitaniumalloyhassufficientquantitiesofβ-stabilityelements,thestrongdrivingforceofphaseseparationduringquenchingleadstothedifferentiationofβphaseintoβ-leanandβ-richregion,andeventuallytoobviouslatticedistortion.Thelatticedistortionresultsinlocalisedatomicornano-scalestructuralmodulationintheβ-leanregion,i.e.,embryonicω,whichhasanintermediatestructurebetweenβandωphase[28].
Figure5Brightfieldandselectionelectrondiffractionpatternof(a)746℃STsample;(b)900℃STsample(STstandsforsolutiontreatment)
下载:原图|高精图|低精图
3.2Gradientmicrostructuresduringsolutionandageing
3.2.1α+βsolutionfollowingageing
TheSEMimagesofthealloyafterα+βsolutiontreatmentat746,770,795and819℃for2h,andageingat450,550and600℃for8hareshowninFigure6.Theequiaxedαpphaseappearsatpriorβgrainboundary,whichindicatesthatαpphasecouldrestrainthegrowthofβgrain,andimprovetheductility[29].Theincreaseofsolutiontemperaturereducesthevolumefractionofαpandaffectsthemorphologyandsizeofαs[6,30].AsshowninTables3-5.Thewidthandphasespacingofαsdecreasewiththeincreaseofsolutiontemperature.Thestatisticalresultsshowthatwhentheageingtemperatureis600℃,thewidthandspacingofαsdecreasefrom57and142nmto47and65nmasthesolutiontemperatureincreasesfrom746℃to819℃,respectively,andthesameregularwasobservedwhentheageingtemperatureis450℃and550℃.
Figure6SEMimagesofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloyaftergradientheattreatment:(a1)746℃,(b1)770℃,(c1)795℃and(d1)819℃solutiontreatmentfor2h;(a2-d2)450℃,(a3-d3)550℃and(a4-d4)600℃for8h
下载:原图|高精图|低精图
ItcanbeseenfromTable3,theαpphaseslightlycoarsenswiththeincreaseofageingtemperature,whichindicateslowerstabilityduringageing.Thesizeofαsandthespacingbetweenαsareverysensitivetoageingtemperature.Thecomparisonof(a2)-(a4),(b2)-(b4),(c2)-(c4),and(d2)-(d4)inFigure6revealsthat,atthesamesolutiontemperature,αscoarsenswiththeincreaseofageingtemperature.Statisticalresultsonspacingandwidthofαsaftersolutiontreatedat746℃,795℃,819℃followedbyageingtemperaturesareshowninTables4and5.Itcanbeseenthatthewidthandphasespacingofαsincreaseby3-4timeswhentheageingtemperatureincreasesfrom450℃to600℃aftersolutiontreatedinthetemperaturerangeof746-819℃.Solutiontreatedat746℃,thewidthandphasespacingofαsincreasedfrom17nmand35nmageingat450℃to57nmand142nmageingat600℃,respectively.
Table3Statisticalresultsofdiameterofαp(dp),widthofαs(ws)andspacingofαs(λ)in746℃solutiontreatedsamplefollowedbyageing
Ageingtemperature/℃dp/μmws/nmλ/nm
4502.761735
5503.053978
6003.1757142
下载:导出CSV
Table4Statisticalresultsofwidthofαsinthesolutiontreatedsamplesat746℃,795℃and819℃followedbyageing
Ageingtemperature/℃ws/nm
746℃795℃819℃
450171514
550393429
600575147
下载:导出CSV
Table5Statisticalresultsofspacinglengthofαs(λ)inthesolutiontreatedsamplesat746℃,795℃and819℃followedbyageing
Ageingtemperature/℃λ/nm
746℃795℃819℃
450352522
550785832
60014210565
下载:导出CSV
Aftersolutionat746-770℃for2handfollowingageingat550℃,600℃for8h,thehierarchicalstructurecomposedofmicronscaleαpphase,submicronscaleαrphaseandnanometrescaleαsphasewascreated.Solutiontreatedat746℃for2hfollowingageingat600℃for8h,theαsphasebecomesthickerwiththeaveragethicknessof57nm.Theincreaseofthicknessofαsphasemakesthecrackpropagationpathbecomemoretortuousandrequiremoreenergytobypassαs,whichinturnincreasetheductility.Thehomogeneityofthestraingradientinthehierarchicalα-structureisbeneficialfortheductilityenhancementoftitaniumalloy[13].
3.2.2βsolutionfollowingageing
Figure7showsthegradientmicrostructurefeaturesofthealloysolutiontreatedat844-909℃for2hfollowingageingat450-600℃for8h.Whentheagingtemperatureis450℃,theαsphasedidnotappearinβmatrix.Whentheageingtemperatureis550℃,fineαsphaseprecipitatedinβmatrix.Whentheageingtemperatureis600℃,theαsphaseslightlycoarsens.Moreover,whensolutiontreatednearβ-transustemperature,αsismuchthicker.Atthetemperaturerangeof865-909℃,thesolutiontreatmenttemperaturehasnoobviouseffectonthemorphologyandsizeofαs.
Figure7SEMimagesofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloyaftergradientheattreatment:(a1)844℃,(b1)865℃,(c1)885℃,(d1)900℃and(e1)909℃solutiontreatmentfor2h;Representageingat(a2-e2)450℃,(a3-e3)550℃,and(a4-e4)600℃for8h
下载:原图|高精图|低精图
3.3Mechanicalpropertiesoftheagedalloy
TheagehardeningbehaviorofthealloyaftergradientsolutiontreatmentisshowninFigure8.ThehardnessvaluesofgradientsolutiontreatedsamplewerewithinHV283-295.Afterageing,thegradientsolutiontreatedsampleshowsobviousagehardening.Solutiontreatedsampleinβ-phaseregionhasmoresignificantagehardeningthanthatinsolutiontreatedsampleinα+βregion.Underthesameageingconditionat450℃,whenthesolutiontemperatureincreasesfrom746℃to819℃,themicrohardnessincreasesfromHV419.8toHV482.8;butwhenthesolutiontemperatureincreasesfrom844℃to909℃,themicrohardnessincreasesfromHV507.8toHV514.6,ageingat550℃and600℃thesamplesshowsimilarresults.Thisindicatesthattheagehardeningofsolutioninα/βphaseregionismoresensitivetosolutiontemperaturethanthatinβphaseregion.Inaddition,at450℃theagehardeningisstrongerthanthatat550℃and600℃.
Figure8Agehardeningcurvesofgradientsolutiontreatedalloyagedat450,550and600℃for8h
下载:原图|高精图|低精图
XRDpatternsinFigure9showthatonlyαandβphasepeaksappearedinthesamplesaftersolutiontreatedat746,795,819and900℃followingageingat550℃for8h,indicatingthatthereisonlyαphaseinβmatrixinthosesamples,whichisconsistentwiththeSEMmicrostructureshowninFigures6and7,indicatingthatthehardeningeffectofthealloyresultedfromαsphase.Theincreaseofageingtemperatureacceleratedthedecompositionofmetastablephaseandpromotedtheformationofequilibriumphase[31].Theincreaseofageingtemperaturefrom550℃to600℃acceleratedtheprecipitationofαsphase.Therefore,itcanbeinferredthatthereisalsoonlyαphaseinβmatrixageingat600℃for8h.
Figure9XRDpatternsofalloysolutiontreatedat746,795,819and900℃for2h,andthenagedat550℃for8h
下载:原图|高精图|低精图
Basedontheagehardeningcurveandmicrostructurecharacterizationofgradientsample,theconditionspossiblycombinedhighstrengthandductilitywereselectedtoevaluatethetensileproperties,asshowninFigure10.Thealloyexhibitshighyieldstrength(YS)of1457MPabutarelativelylowelongationof2.1%aftersolutiontreatment(ST)at819℃followedbyageingat550℃.Whenagedat600℃,thestrengthisdecreased,buttheductilityislargelyimproved.Asuperiorcombinationofstrengthandductilityisachievedwhenageingat600℃afterSTat746℃,thealloyobtainedagoodcombinationofelongationof15%andyieldstrengthof1140MPa.Thestrengthdecreaseswithageingtemperatureincrease,whiletheductilityshowsanoppositetrend.Thisisattributedtothedecreaseofαsphaselengthandincreasedthicknesswiththeincreaseofageingtemperature.
Figure10Theengineeringstress-straincurvesofsolutiontreatedandagedalloysamples(“ST”standforsolutiontreament;“UTS”standsforultimatetensilestrength;“EL”standsforelongation;“A”standsforageingtreatment)
下载:原图|高精图|低精图
Thesolutiontemperaturegreatlyinfluencesstrengthandductilityatthesameageingtemperature.Ageingat600℃for8h,whenthesolutiontemperaturewasincreasedfrom746℃to819℃,YSwasimprovedfrom1140to1383MPa,whiletheelongationdecreasedfrom15.0%to4.4%.Ageingat550℃for8hshowedthesametrend.Thisisduetothedecreaseofvolumefractionofαpphasesignificantly,andthethicknessandspacingofαsphasedecreaseaswell.
3.4Fractographyoftheagedalloy
Figure11showsthetensilefractographsofthespecimenaftersolutiontreatedat746℃for2hfollowingageingat600℃for8h.Itcanbeseenthattherearemanydimplesandsomesecondarycracksonthefracturesurface.Thefluctuationoffracturesurfaceissignificant,indicatingthatthecrackpathistortuous.Thefracturesurfacecanbeclearlydividedintotheshearingareaanddimpledregion,whichhasatypicalcupconeshapewithroughedges,indicatingaconsiderablemacroscopicplasticdeformationbeforethefinalfracture.Thefracturemorphologyshowsacompleteductilefracturewithasmallsecondarycrackneartheshearzone.ThedimplesinFigure11(b)indicatetheimprovedductility.
Figure11Fractographsofthealloyageingat600℃for8hwithasolutiontreatmentof746℃for2h:(a)Macro-fractography;(b)Dimplefractureregion
下载:原图|高精图|低精图
4Discussion
4.1Influenceofsolutiontreatmentonmicrostructure
Thesolutiontreatmenttemperaturehasanimportanteffectonthemorphology,sizeandvolumefractionofprimaryαphase,whichaffectsthestrengthandductilityofthealloy.Atlowersolutiontemperature746-770℃,therearetwokindsofprimaryphasesinthealloy:oneistheglobularαpphase;theotheroneissubmicronαrphase.Nano-scaleαsphaseprecipitatedinβmatrixduringthesubsequenthighertemperatureageing.Thesethreekindsofαphaseconstitutethefeatureofhierarchicalstructure.Aftersolutionatrelativelyhighertemperature,αrphasedisappeared,andglobularαpphaseexisted.Afterageingathighertemperature,thealloyexhibitedbimodalmicrostructure.Whenthesolutiontemperatureexceededβtransitiontemperature,noαpphasewasobserved.Inthesubsequenthighertemperatureageing,αsnano-precipitatedispersedinβmatrix.
Inthiswork,thehierarchicalstructurehasasuperiorcombinationofstrengthandplasticity,mainlyduetothefollowingreasons:1)Theαs/βinterfacecouldblockthemovementofdislocation[31],whichisthemaincontributionforhighstrength;2)Thehierarchicalstructurehashighvolumefractionsofαpandαrphase,whichproducestrainhardeningcompatiblewithtransformedβmatrixtomaintainuniformdeformation;3)Thesoftαpphaseandfineαsphaseendowthealloyhighstrengthandgoodductility.However,themicrostructurecomposedofdifferentsizesandmorphologiesareplasticallynon-homogeneoustosomeextent[32].Forthebimodaltitaniumalloy,plasticdeformationisinitiatedinsoftαpphase,resultinginhigherplasticstrainthanglobaltensilestrain[33].Duringfurtherdeformation,strainincompatibilitybetweenαpandtransformedβincreases,whichinturndecreasestheplasticity.Thehierarchaldistributionofαphasecausesmorehomogeneousstrainpartitioningandimprovestheplasticity[14].
Thesolutiontemperaturecouldalsoaffectthewidthandspacingofαsphase.Thesolutiontemperatureaffectsthevolumefractionofprimaryαphase,thedistributionofelementsandthestabilityofβphase[34-36].Differentelementstendtobeconcentratedindifferentphase,forexample,βphaseisrichwithβ-stabilisingelements,suchasV,MoandCr,whileαphaseisrichwithα-stabiliserAl[35].Whenthealloyissolutiontreatedinα+βphaseregion,alloyingelementsareessentialforphaseformationandmicrostructureformationinβ-Tialloy,andtheirdiffusiondeterminesthecompositionandstabilityofαandβphaseinthealloy[36-37].Thismeansthatwiththeincreaseofsolutiontemperature,thesoluteconcentrationofβstabilizersretainedinmatrixdecreases,andsodoesthephasestabilityoftheresidualβphaseasaresult.Thedifferenceofβ-stabilityexertsaremarkableinfluenceontheprecipitationofαs,which,inturn,resultsinanincrementofdrivingforceforαphasenucleationduringageing[31,38-39].Thisisthereasonwhyatthesameageingtemperature,αsphasebecomesfinerandthespacingbecomessmallerwiththeincreaseofsolutiontemperature.
Sincetheαs/βinterfacestrengtheningistheprimarystrengtheningmechanisminmetastableβtitaniumalloy,thespacingofαs(λ)determinesthedistancethatdislocationcouldslidefreely,whichinturndeterminesthedislocationaccumulationatαs/βinterface.Thisstrengtheningmechanismissimilartofinegrainstrengthening[12,33].Therefore,thinnerαsphaseandsmallerαsphasespacingmeanshorterdistanceatwhichthedislocationcouldslipfreely,whichincreasesstrengthbutdecreasesductilitywiththeincreaseofsolutiontemperatureatthesameageingconditions.
4.2Influenceofageingonmicrostructure
Ageingprocesscouldtailorthesizeandspacingofαsphasewhichaffectsstrengthandductilityofβ-Tialloy[30,40].Theprimaryαphasewithdifferentmorphologiesandvolumefractionswasobtainedbydifferentsolutiontreatmentsfollowedageingat450-600℃.Thesizeofαsandthegrainboundarybecomecoarserwithincreasingageingtemperature,aspresentedinFigure7.
Previousstudiesshowedthatthetransitiondrivingforceofαsphasefromβphaseisinsufficientatlowerageingtemperature[41].Theisothermalωphase(ωiso)couldbepossiblytransitionphaseduringageingatlowertemperature.Theappearanceofnanometreωisowouldsignificantlyincreasestrengthbutdecreaseductility[42].Ageingat450℃,themicrohardnessofalloyisconsiderablyhigherthanthatatotherageingconditions,whichmeansthatωisophasemightprecipitateinthealloyduringlowertemperatureageing.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论