梯度热处理快速优化Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn合金获得高强高韧性能的微观组织_第1页
梯度热处理快速优化Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn合金获得高强高韧性能的微观组织_第2页
梯度热处理快速优化Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn合金获得高强高韧性能的微观组织_第3页
梯度热处理快速优化Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn合金获得高强高韧性能的微观组织_第4页
梯度热处理快速优化Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn合金获得高强高韧性能的微观组织_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

时间:TIME\@"yyyy'年'M'月'd'日'"2022年3月29日学海无涯页码:第1-页共1页梯度热处理快速优化Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn合金获得高强高韧性能的微观组织1Introduction

Metastableβtitaniumalloyhasgreatpotentialapplicationinaerospaceandbiomedicalindustriesduetotheirhighspecificstrength,goodcombinationofstrengthandductility[1-2].Thedevelopmentofaerospaceindustryrequireshigherperformanceoftitaniumalloy,facilitatingthedesignanddevelopmentofnewβ-Tialloys[3-6],Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloyisoneofthem.Asahighstrengthmetastableβ-Tialloy,thestrengthandductilityisverysensitivetomicrostructuremainlydependingonsolutionandageingtreatment.Itisakeywaytotailoringmechanicalpropertiesthroughestablishingtherelationshipbetweenheattreatmentandmicrostructures.

Previousstudiesfoundthatalthoughtheductilityofmetastableβtitaniumalloysignificantlydependsonthesizeofβ-grainandprimaryαphase,strengthconsiderablydependsonthemorphology,sizeandvolumefractionofαsphase[7-9].Therefore,controllingthesize,morphology,anddistributionofαphasethroughheattreatmentisoneofimportantwaysfortailoringmechanicalpropertiesofmetastableβ-Tialloys[4,10-12].Establishingtherelationshipbetweenheattreatmentparametersandmicrostructureofmetastableβ-Tialloyisarelativelycomplexprocess,includingannealing,solutionandageing.Afterdifferentsolutionandageingtreatments,themicrostructureofthealloycouldbetailoredtoequiaxed,lamellar,bimodalandevenmorehierarchicalfeatures[13-14].Besides,themorphologyandvolumefractionoftheprimaryαphase,sizeandspacingofthesecondaryphasearealsoverysensitivetosolutionandageing.InTi-5Al-4Zr-8Mo-7Valloy,αswith51nminwidthand85nminspacingresultedinultimatestrengthof1390MPawithelongationof10.3%afterthesolutiontreatmentat800℃andageingat570℃for8h[9].RENetal[15]achievedgoodcombinationofstrengthandductilityinTi5231alloy,ultimatestrengthof1238MPaandelongationof20%,owingtothemicrostructureconsistedof13vol%ofαpandαsof187nminspacingaftersolutiontreatmentat830℃andageingat620℃for6h.Throughchangingthesolutionandageingtemperature,thesizeandfractionofbothαpandαsphasescouldbetailoredforachievinggoodcombinationofstrengthandductility,suchasTi7333[16-17],Ti1023[18]andTi55531[11,19-20]alloys.

Inrecentyears,someeffortshavebeenmadetotakeadvantageofhigh-throughputtechnologiestoacquireamountsofmicrostructurefeaturesrapidlyinordertotailorandoptimizemicrostructureandmechanicalpropertiesoftitaniumalloy.AFONSOetal[21]obtaineddifferentcoolingratesforTi-20NballoybyJorminyquenchingtesttostudytherelationshipamongcoolingrates,differentmicrostructuresandmechanicalproperties.XUetal[22]accuratelydeterminedthepseudo-spinodaldecompositiontemperatureofTi5553alloythroughgradientheattreatmentandobtainedahighvolumefractionofsmallsizeαphasebypseudo-spinodaldecomposition,resultinginaveryhighstrengtheningeffect.Thecontinuouscomponentgradientcanbeachievedbydiffusionmultipleexperiment,andtheeffectofcomponentsonperformancecanbedeterminedconvenientlyandaccurately.Bythismethod,WUetal[23]studiedtheeffectofMoelementandVcontentonthemicrostructureofTi-Mo-Valloyingradientcompositionbyhigh-throughputmultiplesample,anddesignedTi-6Mo-3Valloywithultrafineαphase,whichhasyieldstrengthof1411MPaandelongationof6.5%.ZHANGetal[24]rapidlyestablishedtherelastionshipof“composition-microstructure-elasticmodulus”ofTi-Nb-Zrsystemandbulidtheelasticmodulusandhardnessdatabase.

Inthisstudy,aconvenienthigh-throughputheattreatmentapproachwasdeveloped,whichcouldcreatetemperaturegradientforsolutionandageingtreatmentinonlyonesample.TheageinghardeningbehaviorandmicrostructuralevolutionofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloywererapidlystudiedforoptimizingmicrostructureforimprovingstrengthandductility.

2Experimental

2.1Materials

Theas-receivedalloywasforgedrodsuppliedbytheBaotaiGroupCo.,Ltd.ThechemicalcompositionofthealloyislistedinTable1.TheinitialmicrostructureshowninFigure1consistsoffinebimodalα+βmicrostructurewithapproximately14vol%equiaxedαpphaseandfinedispersedlamellarαsphase,andtheaveragesizeofαpphaseisabout2-3μm.

Table1ThechemicalcompositionofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloy(wt%)

AlVMoCrNbFeZrSnOTi

3.891.226.782.782.010.0481.051.000.107Bal.

下载:导出CSV

Figure1SEMimageofas-receivedalloy

下载:原图|高精图|低精图

2.2Preparationofgradientsample

Around-rodsampleof10mmindiameterand92mminlengthwaswire-cutfromtheas-receivedalloy.Figure2showstheschematicofthegradientheattreatment.Thetubefurnacewasusedforgradientheattreatmentwithaprecisely-programmabletemperature-controlledzoneinthemiddlepart.Thetemperaturewassetat950℃,anddecreasedgraduallyfrom950℃to25℃inthestokehole.Thepositionofgradienttemperaturewastestedusingstandardsamplebythermocoupleaccurately,asshowninFigure2.Inordertoachieveaccurategradienttemperature,nineequallyspacedholeswerepunchedinthesamplebyelectricsparkdrillingwith10-mmspacing,andthenthethermocouplewireswereplacedintheholes.Topreventoxidationofthesampleduringgradientheattreatment,Cr2O3powderwasmixedwithwaterandthenevenlycoatedonthesamplesurfacebeforegradientsolutiontreatment.Afterwaterevaporated,thesamplewasputinaporcelainboatandplacedtothegradientpositioninthefurnace.

Figure2Schematicillustrationofgradientheattreatedsamplepreparation

下载:原图|高精图|低精图

AscanbeseeninTable2,themeasuredtemperaturefromthermocouplewere746,770,795,819,844,865,885,900and909℃,respectively.Aftergradientsolutionfor2h,thesamplewasquenchedinwaterimmediately.Theβ-transustemperatureofthealloyisabout(845±5)℃.Thegradientsolutioninα+βandβphaseregionscouldbeobtainedinonlyonesample.Then,thequenchedgradientsolutionsamplewascutintofouridenticalsheets:oneofthemwasnotfurtheraged,andtheotherthreewereagedfor8hat450,550and600℃,respectively.Beforeageing,Cr2O3wasalsoevenlycoatedoneachsampleasananti-oxidationlayer.

Table2Gradienttemperaturemeasuredbythermocouplewires

PositionTemperature/℃

TC1746

TC2770

TC3795

TC4819

TC5844

TC6865

TC7885

TC8900

TC9909

下载:导出CSV

2.3Microstructureobservation

ThemicrostructureofgradientsolutiontreatedandagedsampleswereobservedusingMIRA2LMHscanningelectronmicroscope(SEM)andTecnaiG2transmissionelectronmicroscope(TEM)operatedat200kV.ForTEMobservation,thethinfoilswerepreparedbyatwin-jetelectropolishingtechniqueusingKroll’sreagent,whichcomposedof5%perchlorate,35%butylalcoholand60%methanol.Theaveragegrainsizeandvolumefractionofαpphase,thethicknessandlengthofαsphaseweremeasuredstatisticallybyImageJsoftware.

2.4Mechanicalpropertytesting

Hardnesstestingwasconductedon200HBVS-30Vickershardnesstesterwith9.8Nload.Eachgroupofdatahassevenhardnessvaluesandtheaveragevaluewasused.TensilepropertiesweretestedaccordingtoGB/T228—2022standard.Beforeheattreatment,sampleswerecutintotheround-rodshapefirstly,afterheattreatment,theround-rodsamplewasprocessedintoastandard25-mmlongtensilespecimen5mmindiameter.ThetensilespecimenisshowninFigure3.TensiletestswereconductedonMTSLandmarkatroomtemperaturewithstrainrateof10-3s-1,andastrainextensometerwasadoptedtoensuretheaccuracyofstress-straindatameasurement.

Figure3Thedimensionsoftensilespecimen(Unit:mm)

下载:原图|高精图|低精图

3Results

3.1Microstructureofthesolutiontreatedalloy

Figure4showsthemicrostructureofgradientsolutiontreatedsample.Thevolumefractionofαpdecreaseswiththeincreaseofsolutiontemperature,from30%at746℃to3%at819℃.Whenthesolutiontemperaturewasabovetheβ-transustemperature,noαpphasewasobservedat844℃,whichmeansthattheαphasetransformedtoβbetween819and844℃.Whenthesamplewassolutiontreatedat746℃and770℃,theprimaryαphasehadtwodifferentmorphologies:globularαphase(αp)withdiameterof1-5µmandrod-shapedαphase(αr)withwidthof0.1-0.4µmandlengthof0.5-4µm.InFigures4(c)and(d),onlytheglobularαphasecouldbeobservedneartoβ-transustemperature.

Figure4SEMimagesofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloysolutiontreatedatdifferenttemperatures:(a)746℃;(b)770℃;(c)795℃;(d)819℃;(e)844℃(Thenumberinthetoprightcornershowsthevolumefractionofαpintheβmatrix)

下载:原图|高精图|低精图

Figure5showstheTEMimagesof900℃and746℃solutiontreatedsampleinordertoobservewhethertheathermalωphase(ωath)precipitatedduringquenching.Someperiodicstriationswereobservedinthebright-fieldTEMimages.Insertedselectedareaelectrondiffractionpatternsshowthat,otherthanthefaintdiffusescattering,therearenoreflectionsatthe1/3and2/3(112)βpositions,whichcouldindicatetheexistenceofωathphase.Thistypeofperiodicstriationwasalsoobservedintheothermetastabletitaniumalloys[25-27],showingthespinodaldecompositionfeature.Whenthetitaniumalloyhassufficientquantitiesofβ-stabilityelements,thestrongdrivingforceofphaseseparationduringquenchingleadstothedifferentiationofβphaseintoβ-leanandβ-richregion,andeventuallytoobviouslatticedistortion.Thelatticedistortionresultsinlocalisedatomicornano-scalestructuralmodulationintheβ-leanregion,i.e.,embryonicω,whichhasanintermediatestructurebetweenβandωphase[28].

Figure5Brightfieldandselectionelectrondiffractionpatternof(a)746℃STsample;(b)900℃STsample(STstandsforsolutiontreatment)

下载:原图|高精图|低精图

3.2Gradientmicrostructuresduringsolutionandageing

3.2.1α+βsolutionfollowingageing

TheSEMimagesofthealloyafterα+βsolutiontreatmentat746,770,795and819℃for2h,andageingat450,550and600℃for8hareshowninFigure6.Theequiaxedαpphaseappearsatpriorβgrainboundary,whichindicatesthatαpphasecouldrestrainthegrowthofβgrain,andimprovetheductility[29].Theincreaseofsolutiontemperaturereducesthevolumefractionofαpandaffectsthemorphologyandsizeofαs[6,30].AsshowninTables3-5.Thewidthandphasespacingofαsdecreasewiththeincreaseofsolutiontemperature.Thestatisticalresultsshowthatwhentheageingtemperatureis600℃,thewidthandspacingofαsdecreasefrom57and142nmto47and65nmasthesolutiontemperatureincreasesfrom746℃to819℃,respectively,andthesameregularwasobservedwhentheageingtemperatureis450℃and550℃.

Figure6SEMimagesofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloyaftergradientheattreatment:(a1)746℃,(b1)770℃,(c1)795℃and(d1)819℃solutiontreatmentfor2h;(a2-d2)450℃,(a3-d3)550℃and(a4-d4)600℃for8h

下载:原图|高精图|低精图

ItcanbeseenfromTable3,theαpphaseslightlycoarsenswiththeincreaseofageingtemperature,whichindicateslowerstabilityduringageing.Thesizeofαsandthespacingbetweenαsareverysensitivetoageingtemperature.Thecomparisonof(a2)-(a4),(b2)-(b4),(c2)-(c4),and(d2)-(d4)inFigure6revealsthat,atthesamesolutiontemperature,αscoarsenswiththeincreaseofageingtemperature.Statisticalresultsonspacingandwidthofαsaftersolutiontreatedat746℃,795℃,819℃followedbyageingtemperaturesareshowninTables4and5.Itcanbeseenthatthewidthandphasespacingofαsincreaseby3-4timeswhentheageingtemperatureincreasesfrom450℃to600℃aftersolutiontreatedinthetemperaturerangeof746-819℃.Solutiontreatedat746℃,thewidthandphasespacingofαsincreasedfrom17nmand35nmageingat450℃to57nmand142nmageingat600℃,respectively.

Table3Statisticalresultsofdiameterofαp(dp),widthofαs(ws)andspacingofαs(λ)in746℃solutiontreatedsamplefollowedbyageing

Ageingtemperature/℃dp/μmws/nmλ/nm

4502.761735

5503.053978

6003.1757142

下载:导出CSV

Table4Statisticalresultsofwidthofαsinthesolutiontreatedsamplesat746℃,795℃and819℃followedbyageing

Ageingtemperature/℃ws/nm

746℃795℃819℃

450171514

550393429

600575147

下载:导出CSV

Table5Statisticalresultsofspacinglengthofαs(λ)inthesolutiontreatedsamplesat746℃,795℃and819℃followedbyageing

Ageingtemperature/℃λ/nm

746℃795℃819℃

450352522

550785832

60014210565

下载:导出CSV

Aftersolutionat746-770℃for2handfollowingageingat550℃,600℃for8h,thehierarchicalstructurecomposedofmicronscaleαpphase,submicronscaleαrphaseandnanometrescaleαsphasewascreated.Solutiontreatedat746℃for2hfollowingageingat600℃for8h,theαsphasebecomesthickerwiththeaveragethicknessof57nm.Theincreaseofthicknessofαsphasemakesthecrackpropagationpathbecomemoretortuousandrequiremoreenergytobypassαs,whichinturnincreasetheductility.Thehomogeneityofthestraingradientinthehierarchicalα-structureisbeneficialfortheductilityenhancementoftitaniumalloy[13].

3.2.2βsolutionfollowingageing

Figure7showsthegradientmicrostructurefeaturesofthealloysolutiontreatedat844-909℃for2hfollowingageingat450-600℃for8h.Whentheagingtemperatureis450℃,theαsphasedidnotappearinβmatrix.Whentheageingtemperatureis550℃,fineαsphaseprecipitatedinβmatrix.Whentheageingtemperatureis600℃,theαsphaseslightlycoarsens.Moreover,whensolutiontreatednearβ-transustemperature,αsismuchthicker.Atthetemperaturerangeof865-909℃,thesolutiontreatmenttemperaturehasnoobviouseffectonthemorphologyandsizeofαs.

Figure7SEMimagesofTi-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Snalloyaftergradientheattreatment:(a1)844℃,(b1)865℃,(c1)885℃,(d1)900℃and(e1)909℃solutiontreatmentfor2h;Representageingat(a2-e2)450℃,(a3-e3)550℃,and(a4-e4)600℃for8h

下载:原图|高精图|低精图

3.3Mechanicalpropertiesoftheagedalloy

TheagehardeningbehaviorofthealloyaftergradientsolutiontreatmentisshowninFigure8.ThehardnessvaluesofgradientsolutiontreatedsamplewerewithinHV283-295.Afterageing,thegradientsolutiontreatedsampleshowsobviousagehardening.Solutiontreatedsampleinβ-phaseregionhasmoresignificantagehardeningthanthatinsolutiontreatedsampleinα+βregion.Underthesameageingconditionat450℃,whenthesolutiontemperatureincreasesfrom746℃to819℃,themicrohardnessincreasesfromHV419.8toHV482.8;butwhenthesolutiontemperatureincreasesfrom844℃to909℃,themicrohardnessincreasesfromHV507.8toHV514.6,ageingat550℃and600℃thesamplesshowsimilarresults.Thisindicatesthattheagehardeningofsolutioninα/βphaseregionismoresensitivetosolutiontemperaturethanthatinβphaseregion.Inaddition,at450℃theagehardeningisstrongerthanthatat550℃and600℃.

Figure8Agehardeningcurvesofgradientsolutiontreatedalloyagedat450,550and600℃for8h

下载:原图|高精图|低精图

XRDpatternsinFigure9showthatonlyαandβphasepeaksappearedinthesamplesaftersolutiontreatedat746,795,819and900℃followingageingat550℃for8h,indicatingthatthereisonlyαphaseinβmatrixinthosesamples,whichisconsistentwiththeSEMmicrostructureshowninFigures6and7,indicatingthatthehardeningeffectofthealloyresultedfromαsphase.Theincreaseofageingtemperatureacceleratedthedecompositionofmetastablephaseandpromotedtheformationofequilibriumphase[31].Theincreaseofageingtemperaturefrom550℃to600℃acceleratedtheprecipitationofαsphase.Therefore,itcanbeinferredthatthereisalsoonlyαphaseinβmatrixageingat600℃for8h.

Figure9XRDpatternsofalloysolutiontreatedat746,795,819and900℃for2h,andthenagedat550℃for8h

下载:原图|高精图|低精图

Basedontheagehardeningcurveandmicrostructurecharacterizationofgradientsample,theconditionspossiblycombinedhighstrengthandductilitywereselectedtoevaluatethetensileproperties,asshowninFigure10.Thealloyexhibitshighyieldstrength(YS)of1457MPabutarelativelylowelongationof2.1%aftersolutiontreatment(ST)at819℃followedbyageingat550℃.Whenagedat600℃,thestrengthisdecreased,buttheductilityislargelyimproved.Asuperiorcombinationofstrengthandductilityisachievedwhenageingat600℃afterSTat746℃,thealloyobtainedagoodcombinationofelongationof15%andyieldstrengthof1140MPa.Thestrengthdecreaseswithageingtemperatureincrease,whiletheductilityshowsanoppositetrend.Thisisattributedtothedecreaseofαsphaselengthandincreasedthicknesswiththeincreaseofageingtemperature.

Figure10Theengineeringstress-straincurvesofsolutiontreatedandagedalloysamples(“ST”standforsolutiontreament;“UTS”standsforultimatetensilestrength;“EL”standsforelongation;“A”standsforageingtreatment)

下载:原图|高精图|低精图

Thesolutiontemperaturegreatlyinfluencesstrengthandductilityatthesameageingtemperature.Ageingat600℃for8h,whenthesolutiontemperaturewasincreasedfrom746℃to819℃,YSwasimprovedfrom1140to1383MPa,whiletheelongationdecreasedfrom15.0%to4.4%.Ageingat550℃for8hshowedthesametrend.Thisisduetothedecreaseofvolumefractionofαpphasesignificantly,andthethicknessandspacingofαsphasedecreaseaswell.

3.4Fractographyoftheagedalloy

Figure11showsthetensilefractographsofthespecimenaftersolutiontreatedat746℃for2hfollowingageingat600℃for8h.Itcanbeseenthattherearemanydimplesandsomesecondarycracksonthefracturesurface.Thefluctuationoffracturesurfaceissignificant,indicatingthatthecrackpathistortuous.Thefracturesurfacecanbeclearlydividedintotheshearingareaanddimpledregion,whichhasatypicalcupconeshapewithroughedges,indicatingaconsiderablemacroscopicplasticdeformationbeforethefinalfracture.Thefracturemorphologyshowsacompleteductilefracturewithasmallsecondarycrackneartheshearzone.ThedimplesinFigure11(b)indicatetheimprovedductility.

Figure11Fractographsofthealloyageingat600℃for8hwithasolutiontreatmentof746℃for2h:(a)Macro-fractography;(b)Dimplefractureregion

下载:原图|高精图|低精图

4Discussion

4.1Influenceofsolutiontreatmentonmicrostructure

Thesolutiontreatmenttemperaturehasanimportanteffectonthemorphology,sizeandvolumefractionofprimaryαphase,whichaffectsthestrengthandductilityofthealloy.Atlowersolutiontemperature746-770℃,therearetwokindsofprimaryphasesinthealloy:oneistheglobularαpphase;theotheroneissubmicronαrphase.Nano-scaleαsphaseprecipitatedinβmatrixduringthesubsequenthighertemperatureageing.Thesethreekindsofαphaseconstitutethefeatureofhierarchicalstructure.Aftersolutionatrelativelyhighertemperature,αrphasedisappeared,andglobularαpphaseexisted.Afterageingathighertemperature,thealloyexhibitedbimodalmicrostructure.Whenthesolutiontemperatureexceededβtransitiontemperature,noαpphasewasobserved.Inthesubsequenthighertemperatureageing,αsnano-precipitatedispersedinβmatrix.

Inthiswork,thehierarchicalstructurehasasuperiorcombinationofstrengthandplasticity,mainlyduetothefollowingreasons:1)Theαs/βinterfacecouldblockthemovementofdislocation[31],whichisthemaincontributionforhighstrength;2)Thehierarchicalstructurehashighvolumefractionsofαpandαrphase,whichproducestrainhardeningcompatiblewithtransformedβmatrixtomaintainuniformdeformation;3)Thesoftαpphaseandfineαsphaseendowthealloyhighstrengthandgoodductility.However,themicrostructurecomposedofdifferentsizesandmorphologiesareplasticallynon-homogeneoustosomeextent[32].Forthebimodaltitaniumalloy,plasticdeformationisinitiatedinsoftαpphase,resultinginhigherplasticstrainthanglobaltensilestrain[33].Duringfurtherdeformation,strainincompatibilitybetweenαpandtransformedβincreases,whichinturndecreasestheplasticity.Thehierarchaldistributionofαphasecausesmorehomogeneousstrainpartitioningandimprovestheplasticity[14].

Thesolutiontemperaturecouldalsoaffectthewidthandspacingofαsphase.Thesolutiontemperatureaffectsthevolumefractionofprimaryαphase,thedistributionofelementsandthestabilityofβphase[34-36].Differentelementstendtobeconcentratedindifferentphase,forexample,βphaseisrichwithβ-stabilisingelements,suchasV,MoandCr,whileαphaseisrichwithα-stabiliserAl[35].Whenthealloyissolutiontreatedinα+βphaseregion,alloyingelementsareessentialforphaseformationandmicrostructureformationinβ-Tialloy,andtheirdiffusiondeterminesthecompositionandstabilityofαandβphaseinthealloy[36-37].Thismeansthatwiththeincreaseofsolutiontemperature,thesoluteconcentrationofβstabilizersretainedinmatrixdecreases,andsodoesthephasestabilityoftheresidualβphaseasaresult.Thedifferenceofβ-stabilityexertsaremarkableinfluenceontheprecipitationofαs,which,inturn,resultsinanincrementofdrivingforceforαphasenucleationduringageing[31,38-39].Thisisthereasonwhyatthesameageingtemperature,αsphasebecomesfinerandthespacingbecomessmallerwiththeincreaseofsolutiontemperature.

Sincetheαs/βinterfacestrengtheningistheprimarystrengtheningmechanisminmetastableβtitaniumalloy,thespacingofαs(λ)determinesthedistancethatdislocationcouldslidefreely,whichinturndeterminesthedislocationaccumulationatαs/βinterface.Thisstrengtheningmechanismissimilartofinegrainstrengthening[12,33].Therefore,thinnerαsphaseandsmallerαsphasespacingmeanshorterdistanceatwhichthedislocationcouldslipfreely,whichincreasesstrengthbutdecreasesductilitywiththeincreaseofsolutiontemperatureatthesameageingconditions.

4.2Influenceofageingonmicrostructure

Ageingprocesscouldtailorthesizeandspacingofαsphasewhichaffectsstrengthandductilityofβ-Tialloy[30,40].Theprimaryαphasewithdifferentmorphologiesandvolumefractionswasobtainedbydifferentsolutiontreatmentsfollowedageingat450-600℃.Thesizeofαsandthegrainboundarybecomecoarserwithincreasingageingtemperature,aspresentedinFigure7.

Previousstudiesshowedthatthetransitiondrivingforceofαsphasefromβphaseisinsufficientatlowerageingtemperature[41].Theisothermalωphase(ωiso)couldbepossiblytransitionphaseduringageingatlowertemperature.Theappearanceofnanometreωisowouldsignificantlyincreasestrengthbutdecreaseductility[42].Ageingat450℃,themicrohardnessofalloyisconsiderablyhigherthanthatatotherageingconditions,whichmeansthatωisophasemightprecipitateinthealloyduringlowertemperatureageing.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论