重庆市开州区2024届八上数学期末检测试题含解析_第1页
重庆市开州区2024届八上数学期末检测试题含解析_第2页
重庆市开州区2024届八上数学期末检测试题含解析_第3页
重庆市开州区2024届八上数学期末检测试题含解析_第4页
重庆市开州区2024届八上数学期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市开州区2024届八上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在中,高相交于点,若,则()A. B. C. D.2.已知是直线为常数)上的三个点,则的大小关系是()A. B. C. D.3.若分式的值是零,则x的值是()A.-1 B.-1或2 C.2 D.-24.若分式的值为0,则()A. B. C. D.5.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=6.等腰△ABC中,∠C=50°,则∠A的度数不可能是()A.80° B.50° C.65° D.45°7.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变 B.平均数不变,方差变大C.平均数不变,方差变小 D.平均数变小,方差不变8.若等腰三角形的两边长分别是2和6,则这个三角形的周长是()A.14 B.10 C.14或10 D.以上都不对9.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(

)A.﹣2

B.2

C.0

D.110.下列条件中一定能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.∠A=∠D,AB=DE,BC=EFC.AB=DE,AC=DF,BC=EF D.AB=DE,∠A=∠E,∠B=∠F二、填空题(每小题3分,共24分)11.如图,的面积为,作的中线,取的中点,连接得到第一个三角形,作中线,取的中点,连接,得到第二个三角形……重复这样的操作,则2019个三角形的面积为_________.12.一种微生物的半径是,用小数把表示出来是_______.13.如图,在中,,的外角平分线相交于点,若,则________度.14.如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是______________.15.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.16.若一组数据的平均数为6,众数为5,则这组数据的方差为__________.17.实数81的平方根是_____.18.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为_____三、解答题(共66分)19.(10分)已知:如图,和均为等腰直角三角形,,连结,,且、、三点在一直线上,,.(1)求证:;(2)求线段的长.20.(6分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.21.(6分)如图,直线与双曲线交于A点,且点A的横坐标是1.双曲线上有一动点C(m,n),.过点A作轴垂线,垂足为B,过点C作轴垂线,垂足为D,联结OC.(1)求的值;(2)设的重合部分的面积为S,求S与m的函数关系;(3)联结AC,当第(2)问中S的值为1时,求的面积.22.(8分)“黄金8号”玉米种子的价格5元/kg,如果一次购买10kg以上的种子,超过10kg部分的种子价格打8折.(1)购买8kg种子需付款元;购买13kg种子需付款元.(2)设购买种子x(x>10)kg,付款金额为y元,写出y与x之间的函数关系式.(3)张大爷第一次买了6kg种子,第二次买了9kg种子.如果张大爷一次性购买种子,会少花多少钱?23.(8分)因式分解:(1)4x2-9(2)-3x2+6xy-3y224.(8分)如图,一次函数的图像与的图像交于点,与轴和轴分别交于点和点,且点的横坐标为.(1)求的值与的长;(2)若点为线段上一点,且,求点的坐标.25.(10分)如图,直线过点A(0,6),点D(8,0),直线:与轴交于点C,两直线,相交于点B.(1)求直线的解析式和点B的坐标;(2)连接AC,求的面积;(3)若在AD上有一点P,把线段AD分成2:3的两部分时,请直接写出点P的坐标(不必写解答过程).26.(10分)张明和李强两名运动爱好者周末相约进行跑步锻炼,周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的体育场入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达体育场后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=1.2,n=5时,求李强跑了多少分钟?②直接写出张明的跑步速度为多少米/分(直接用含m,n的式子表示)

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用多边形的内角和公式:,即可求出四边形AFED的内角和是360°,根据已知条件知BD⊥AC,CF⊥AB,得∠AFC=∠ADB=90°,因,即可得出的度数.【题目详解】解:∵高相交于点∴∠AFC=∠ADB=90°∵∴故选:B.【题目点拨】本题主要考查的是多边形的内角和公式以及角度的运算,掌握这两个知识点是解题的关键.2、A【分析】由为常数)可知k=-5<0,故y随x的增大而减小,由,可得y1,y2,y3的大小关系.【题目详解】解:∵k=-5<0,∴y随x的增大而减小,∵,∵,故选:A.【题目点拨】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.3、C【解题分析】因为(x+1)(x−2)=0,∴x=−1或2,当x=−1时,(x+1)(x+2)=0,∴x=−1不满足条件.当x=2时,(x+1)(x+2)≠0,∴当x=2时分式的值是0.故选C.4、C【分析】根据分式的值为0的条件:分子=0且分母≠0,即可求出x.【题目详解】解:∵分式的值为0∴解得:故选C.【题目点拨】此题考查的是分式的值为0的条件,掌握分式的值为0的条件:分子=0且分母≠0是解决此题的关键.5、A【解题分析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.6、D【分析】分类讨论后,根据三角形内角和定理及等腰三角形的两个底角相等解答即可.【题目详解】当∠C为顶角时,则∠A=(180°﹣50°)=65°;当∠A为顶角时,则∠A=180°﹣2∠C=80°;当∠A、∠C为底角时,则∠C=∠A=50°;∴∠A的度数不可能是45°,故选:D.【题目点拨】本题考查了三角形内角和定理,等腰三角形的性质,掌握等腰三角形两底角相等的性质是解题的关键.7、C【解题分析】解:=(160+165+170+163+1)÷5=165,S2原=,=(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.8、A【分析】分腰长为2和腰长为6两种情况,结合三角形三边关系进行讨论即可求得答案.【题目详解】①若2为腰,2+2<6不能构成三角形;②若6为腰,满足构成三角形的条件,则周长为6+6+2=1.故选A.9、B【解题分析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.10、C【分析】根据全等三角形的判定定理进行判断.【题目详解】如图:A.没有边的参与,不能判定△ABC≌△DEF,故本选项错误;B.根据SSA不能判定△ABC≌△DEF,故本选项错误;C.根据SSS能判定△ABC≌△DEF,故本选项正确;D.∠A的对应角应该是∠D,故不能判断,本选项错误;故选C.【题目点拨】本题考查全等三角形的判定,熟练掌握判定三角形全等的几种方法是解决本题的关键,在做此题时可画出图形,根据图形进行判断,切记判定定理的条件里必须有边,且没有边边角(SSA)这一定理.二、填空题(每小题3分,共24分)11、【分析】根据题意可知是△ABC的中位线,可得△ABC∽,相似比为2:1,故S==,同理可得S==×=,进而得到三角形的面积.【题目详解】∵是的中点,是的中线∴是△ABC的中位线∴△ABC∽,相似比为2:1,∴S==,依题意得是的中位线同理可得S=,则S==,…∴S=故答案为:.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知中位线的性质及相似三角形的性质.12、0.1【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】6×10-6m=0.1m.故答案为:0.1.【题目点拨】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).13、【解题分析】根据三角形的内角和定理,得∠ACB+∠ABC=180°-74°=106°;再根据邻补角的定义,得两个角的邻补角的和是360°-106°=254°;再根据角平分线的定义,得∠OCB+∠OBC=127°;最后根据三角形的内角和定理,得∠O=53°.【题目详解】解:∵∠A=74°,∴∠ACB+∠ABC=180°-74°=106°,∴∠BOC=180°-(360°-106°)=180°-127°=53°.故答案为53【题目点拨】此题综合运用了三角形的内角和定理以及角平分线定义.注意此题中可以总结结论:三角形的相邻两个外角的角平分线所成的锐角等于90°减去第三个内角的一半,即∠BOC=90°-∠A.14、三角形的稳定性【分析】用一根木条斜着钉好之后就会出现一个三角形,根据三角形的稳定性即可得到答案.【题目详解】用一根木条斜着钉好之后就会出现一个三角形,因为三角形具有稳定性,所以门框就会固定了.故答案为:三角形的稳定性.【题目点拨】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.15、1【解题分析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=1,故答案为1.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.16、【分析】根据平均数的计算公式,可得,再根据众数是5,所以可得x,y中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【题目详解】解:∵一组数据的平均数为6,众数为5,∴中至少有一个是5,∵一组数据的平均数为6,∴,∴,∴中一个是5,另一个是6,∴这组数据的方差为;故答案为.【题目点拨】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.17、±1【分析】根据平方根的定义即可得出结论.【题目详解】解:实数81的平方根是:±=±1.故答案为:±1【题目点拨】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.18、8【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即可求小正方形的边长.【题目详解】如图,∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2−PQ2=289−225=64,∴QR=8,即字母A所代表的正方形的边长为8.【题目点拨】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)根据等式的基本性质可得∠DAB=∠EAC,然后根据等腰直角三角形的性质可得DA=EA,BA=CA,再利用SAS即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE,从而求出EC和DC,再根据全等三角形的性质即可求出DB,∠ADB=∠AEC,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【题目详解】证明:(1)∵∴∠DAE-∠BAE=∠BAC-∠BAE∴∠DAB=∠EAC∵和均为等腰直角三角形∴DA=EA,BA=CA在△ADB和△AEC中∴△ADB≌△AEC(2)∵是等腰直角三角形,∴DE=,∵∴EC=,∴DC=DE+EC=3∵△ADB≌△AEC∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE+∠BDC,∠AEC=∠ADE+∠DAE=∠ADE+90°∴∠BDC=90°在Rt△BDC中,【题目点拨】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.20、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【分析】(1)根据待定系数法可得直线l1的解析式;(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.【题目详解】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(xC﹣xD)=;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6-=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).【题目点拨】本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.21、(1);(3);(3).【分析】(1)由题意列出关于k的方程,求出k的值,即可解决问题.(3)借助函数解析式,运用字母m表示DE、OD的长度,即可解决问题.(3)首先求出m的值,求出△COD,△AOB的面积;求出梯形ABDC的面积,即可解决问题.【题目详解】(1)设A点的坐标为(1,);由题意得:,解得:k=3,即k的值为3.(3)如图,设C点的坐标为C(m,n).则n=m,即DE=m;而OD=m,∴S=OD•DE=m×m=m3,即S关于m的函数解析式是S=m3.(3)当S=1时,m3=1,解得m=3或-3(舍去),∵点C在函数y=的图象上,∴CD==1;由(1)知:OB=1,AB=3;BD=1-3=3;∴S梯形ABDC=(1+3)×3=4,S△AOB=×1×3=1,S△COD=×3×1=1;∴S△AOC=S梯形ABDC+S△COD-S△AOB=4+1-1=4.【题目点拨】该题主要考查了一次函数与反比例函数图象的交点问题;解题的关键是数形结合,灵活运用方程、函数等知识来分析、判断、求解或证明.22、(1)40,62;(2)y=;(3)5元.【分析】(1)根据题意,可以分别计算出购买3kg和购买6kg种子需要付款的金额;(2)根据题意,可以分别写出0≤x≤5和x>5时对应的函数解析式;(3)先算出张大爷两次购买种子的金额,再算出一次性购买种子需要付款的金额,两次金额相减即可.【题目详解】解:(1)∵8千克<10千克<13千克,∴购买8kg种子需要付款:5×8=40(元),购买13kg种子需要付款:10×5+(13-10)×5×0.8=62(元),故答案为:40,62;(2)由题意可得,当0≤x≤10时,y=5x,当x>10时,y=10×5+5×0.8(x-10)=4x+10,由上可得,y=;(3)张大爷第一次、第二次购买花的钱总数为6×5+9×5=75(元),张大爷一次性购买种子花的钱为:10×5+(6+9-10)×5×0.8=70(元),少花的钱为:75-70=5(元),答:张大爷一次性购买种子,会少花5元钱.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23、(1)(2x+3)(2x-3);(2).【分析】(1)利用平方差公式分解即可;(2)先提公因式,再利用完全平方公式分解即可得出结果.【题目详解】(1)原式==(2x+3)(2x-3)(2)原式==24、(1),;(2).【解题分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,从而得到一次函数的解析式,则易求点A、B的坐标,然后根据勾股定理即可求得AB;

(2)由得到OQ的长,即可求得Q点的坐标.【题目详解】(1)∵点C在直线上,点C的横坐标为−3,∴点C坐标为又∵点C在直线y=mx+2m+3上,∴∴∴直线AB的函数表达式为令x=0,则y=6,令y=0,则,解得x=−4,∴A(−4,0)、B(0,6),∴(2)∵,∴∴OQ=2,∴点Q坐标为(0,2).【题目点拨】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.25、(1)直线的解析式为,;(2)15;(3)点P的坐标为或.【分析】(1)先利用待定系数法可求出直线的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论