2024届吉林省长春市德惠市大区八年级数学第一学期期末学业水平测试试题含解析_第1页
2024届吉林省长春市德惠市大区八年级数学第一学期期末学业水平测试试题含解析_第2页
2024届吉林省长春市德惠市大区八年级数学第一学期期末学业水平测试试题含解析_第3页
2024届吉林省长春市德惠市大区八年级数学第一学期期末学业水平测试试题含解析_第4页
2024届吉林省长春市德惠市大区八年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市德惠市大区八年级数学第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P(﹣,﹣2)关于原点对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在平行四边形中,,,,则平行四边形的面积等于()A. B.4 C. D.63.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1 D.ax+ay=a(x﹣y)4.如图,∠AOB=150°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE⊥OA于点E.若OD=4,则PE的长为()A.2 B.2.5 C.3 D.45.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO等于()

A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶56.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月7.在实数3.1415926,,1.010010001…,中,无理数有()A.1个 B.2个 C.3个 D.4个8.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个 B.3个 C.4个 D.5个9.下列命题中,逆命题是真命题的是()A.全等三角形的对应角相等; B.同旁内角互补,两直线平行;C.对顶角相等; D.如果,那么10.若3x>﹣3y,则下列不等式中一定成立的是()A. B. C. D.11.式子中x的取值范围是()A.x≥1且x≠2 B.x>1且x≠2 C.x≠2 D.x>112.如果一等腰三角形的周长为27,且两边的差为12,则这个等腰三角形的腰长为()A.13 B.5 C.5或13 D.1二、填空题(每题4分,共24分)13.已知是完全平方式,则_________.14.一次函数与的图象如图,则下列结论:①;②;③当时,,正确的是__________.15.已知直角三角形的两条直角边分别为5和12,则其斜边上的中线长为_____.16.已知点A(m+3,2)与点B(1,n﹣1)关于y轴对称,则代数式(m+n)2017的值为.17.计算:=____________.18.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.三、解答题(共78分)19.(8分)已知,,求的值.20.(8分)如图,已知等腰顶角.(1)在AC上作一点D,使(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:是等腰三角形.21.(8分)在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,则∠ABD的度数为_____,∠BDF的度数为______;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN,若BN=DN,∠ACB=.(I)用表示∠BAD;(II)①求证:∠ABN=30°;②直接写出的度数以及△BMN的形状.22.(10分)(1)计算:;(2)因式分解:.23.(10分)一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.24.(10分)如图1,在中,,点为边上一点,连接BD,点为上一点,连接,,过点作,垂足为,交于点.(1)求证:;(2)如图2,若,点为的中点,求证:;(3)在(2)的条件下,如图3,若,求线段的长.25.(12分)在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?26.如图,以的边和为边向外作等边和等边,连接、.求证:.

参考答案一、选择题(每题4分,共48分)1、A【分析】作出点P关于原点对称的点的坐标,然后判断所在的象限.【题目详解】∵P(﹣,﹣2)关于原点对称的点的坐标是(,2)∴点P(﹣,﹣2)关于原点对称的点在第一象限.故选:A.【题目点拨】本题考查了关于原点对称的点的问题,掌握关于原点对称的点的性质、象限的性质以及判断方法是解题的关键.2、A【分析】根据题意作图,作AE⊥BC,根据,AB=求出平行四边形的高AE,再根据平行四边形的面积公式进行求解.【题目详解】如图,作AE⊥BC∵,AB=∴AE=AB=,∴平行四边形的面积=BC×AE=2×=2故选A.【题目点拨】此题主要考查平行四边形的面积,解题的关键是根据题意作图,根据含的直角三角形的特点即可求解.3、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【题目详解】A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.【题目点拨】此题主要考查因式分解的识别,解题的关键是熟知因式分解的定义.4、A【解题分析】分析:根据平行线的性质,可得∠PDO的度数,然后过O作OF⊥PD于F,根据平行线的推论和30°角所在的直角三角形的性质可求解.详解:∵PD∥OA,∠AOB=150°∴∠PDO+∠AOB=180°∴∠PDO=30°过O作OF⊥PD于F∵OD=4∴OF=×OD=2∵PE⊥OA∴FO=PE=2.故选A.点睛:此题主要考查了直角三角形的性质,关键是通过作辅助线,利用平行线的性质和推论求出FO=PE.5、C【分析】由于三角形的三条角平分线的交点为三角形的内心,则点O为△ABC的内心,又知点O到三边的距离相等,即三个三角形的高相等,利用三角形的面积公式知,三个三角形的面积之比即为对应底边之比.【题目详解】解:由题意知,点O为△ABC的内心,则点O到三边的距离相等,设距离为r,则S△ABO=AB·r,S△BCO=BC·r,S△CAO=AC·r,∴S△ABO∶S△BCO∶S△CAO=AB·r:BC·r:AC·r=AB:BC:AC=20:30:40=2:3:4,故选:C.【题目点拨】本题考查三角形的角平分线的性质、三角形的内心、三角形的面积公式,关键是熟知三角形的三条角平分线相交于一点,这一点是该三角形的内心.6、C【解题分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【题目详解】A、极差为:83-28=55,故本选项错误;

B、∵58出现的次数最多,是2次,

∴众数为:58,故本选项错误;

C、中位数为:(58+58)÷2=58,故本选项正确;

D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;

故选C.7、A【分析】根据无理数即为无限不循环小数逐一判断即可.【题目详解】解:3.1415926不是无理数;=4,不是无理数;1.010010001…是无理数;不是无理数.综上:共有1个无理数故选A.【题目点拨】此题考查的是无理数的判断,掌握无理数即为无限不循环小数是解决此题的关键.8、C【分析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【题目详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【题目点拨】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.9、B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【题目详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C选项不符合题意;D.如果,那么的逆命题为如果,那么是假命题,所以D选项不符合题意.故选:B.【题目点拨】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10、A【解题分析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.11、A【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【题目详解】根据题意得x−1⩾0且x−2≠0解得:x⩾1且x≠2.故选A.【题目点拨】本题主要考查二次根式有意义的条件,分式有意义的条件,熟悉掌握条件是关键.12、A【题目详解】设等腰三角形的腰长为x,则底边长为x﹣12或x+12,当底边长为x﹣12时,根据题意,2x+x﹣12=27,解得x=13,∴腰长为13;当底边长为x+12时,根据题意,2x+x+12=27,解得x=5,因为5+5<17,所以构不成三角形,故这个等腰三角形的腰的长为13,故选A.二、填空题(每题4分,共24分)13、【分析】根据完全平方公式的形式,可得答案.【题目详解】解:∵x2+mx+9是完全平方式,

∴m=,

故答案为:.【题目点拨】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.14、①【分析】根据一次函数的图象和性质即可判断出k和a的取值范围,再根据图象的交点横坐标结合函数图象即可得到③的结论.【题目详解】解:①y1=kx+b的图象可知y随x的增大而减小,所以k<0,故此选项正确;

②y2=x+a的图象与y轴相交于负半轴,则a<0,故此选项错误;

③由于两函数图象交点横坐标为3,则当x<3时,y1>y2,故此选项错误.

故答案为:①.【题目点拨】本题考查一次函数的图象和性质,一次函数与不等式的关系.对于一次函数y=kx+b,k决定函数的增减性,b决定函数与y轴的交点.两个函数比较大小,谁的图象在上面谁的值就大.15、6.1.【分析】利用勾股定理求出斜边,再利用直角三角形中,斜边上的中线等于斜边的一半,便可得到答案.【题目详解】解:斜边长为:故斜边上的中线为斜边的一半,故为6.1故答案为:6.1【题目点拨】本题考查勾股定理应用,以及直角三角形斜边上的中线为斜边的一半,掌握这两个知识点是解题的关键.16、﹣1.【题目详解】解:∵点A(m+3,2)与点B(1,n﹣1)关于y轴对称,∴m+3=﹣1,n﹣1=2,解得:m=﹣4,n=3,∴(m+n)2017=﹣1.故答案为﹣1.【题目点拨】本题主要考查了关于y轴对称的点的坐标特征,若两个关于y轴对称,则这两点的横坐标互为相反数,纵坐标相等.17、【分析】按照分式的乘方运算法则即可得到答案.【题目详解】解:故答案为:.【题目点拨】本题考查的是分式的乘方,熟知分式的乘方是关键,结果的符号要注意好.18、方差【分析】设原数据的众数为a、中位数为b、平均数为、方差为S2,数据个数为n,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.【题目详解】设原数据的众数为a、中位数为b、平均数为、方差为S2,数据个数为n,∵将一组数据中的每一个数都加上1,∴新的数据的众数为a+1,中位数为b+1,平均数为(x1+x2+…+xn+n)=+1,方差=[(x1+1--1)2+(x2+1--1)2+…+(xn+1--1)2]=S2,∴值保持不变的是方差,故答案为:方差【题目点拨】本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.三、解答题(共78分)19、-1.【分析】先对多项式进行因式分解,再代入求值,即可得到答案.【题目详解】,当,时,原式.【题目点拨】本题主要考查代数式求值,掌握提取公因式法和完全平方公式分解因式,是解题的关键.20、(1)如图,点D为所作;见解析;(2)证明见解析.【解题分析】(1)根据题意作AB的垂直平分线;(2)根据题意求出,即可证明.【题目详解】(1)解:如图,点D为所作;(2)证明:∵,∴,∵,∴,∴,∴,∴是等腰三角形.【题目点拨】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的判定与性质.21、(1)10°,20°;(2)(Ⅰ);(II)①证明见解析;②=40°,△BMN等腰三角形.【分析】(1)由等边三角形的性质可得AD=AC,∠CAD=60°,利用等量代换可得AD=AB,根据等腰三角形的性质即可求出∠ABD的度数,由等腰三角形“三线合一”的性质可得∠ADE=30°,进而可求出∠BDF的度数;(2)(Ⅰ)根据等腰三角形的性质可用表示出∠BAC,由∠CAD=60°即可表示出∠BAD;(Ⅱ)①如图,连接AN,由角平分线的定义可得∠CAN=,根据等腰三角形“三线合一”的性质可得DN是AC的垂直平分线,可得AN=CN,∠CAN=∠CAN,即可求出∠DAN=+60°,由(Ⅰ)可知∠BAD=240°-2,由△ABN≌△AND可得∠BAN=∠DAN,可得∠BAN=120°+,列方程即可求出的值,利用外角性质可求出∠ANM的度数,根据三角形内角和可求出∠AMN的度数,利用外角性质可求出∠MNB的度数,可得∠BMN=∠ABN,可证明△BMN是等腰三角形.【题目详解】(1)∵△ACD是等边三角形,∴AD=AC=CD,∠CAD=∠ADC=60°,∵AB=AC,∴AD=AB,∵∠BAC=100°,∴∠BAD=∠BAC+∠CAD=160°,∴∠ABD=∠ADB=(180°-∠BAD)=10°,∵点E为AC中点,∴∠ADE=∠CDE=30°,∴∠BDF=∠ADE-∠ADB=20°,故答案为:10°,20°(2)(Ⅰ)∵AB=AC,∠ACB=,∴∠ABC=∠ACB=,∴,∵△ACD为等边三角形,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=240°+.(II)①如图,连接,∵△ACD为等边三角形,∴,在△ABN和△AND中,,∴△ABN≌△AND,∴∠ABN=∠ADN,∵点E的中点,∴DF⊥AC,ED平分∠ADC,∴∠ADE=30°,∴∠ABN=∠ADE=30°.②∵CM平分∠ACB,∠ACB=,∴∠CAM=∠BCM=,∵点E是AC的中点,△ACD是等边三角形,∴DN是AC的垂直平分线,∴AN=CN,∴∠CAN=∠ACM=,∴∠DAN=∠CAD+∠CAN=60°+,∵△ABN≌△AND,∴∠BAN=∠DAN=60°+,∴∠BAN=2∠BAN=120°+,由(Ⅰ)得:∠BAD=240°-2,∴120°+=240°-2,解得:=40°,∴∠BAN=60°+=80°,∠ANM=∠NAC+∠NCA==40°,∴∠AMC=180°-∠BAN-∠ANM=60°,∵∠ABN=30°,∴∠MNB=∠AMC-∠ABN=30°,∴∠ABN=∠MNB,∴MB=MN,∴是等腰三角形.【题目点拨】本题考查等边三角形的性质、全等三角形的判定与性质及等腰三角形的判定与性质,等边三角形的三条边都相等,每个内角都是60°;等腰三角形的两个底角相等,顶角的角平分线、底边的高、底边的中线“三线合一”;熟练掌握相关性质及判定定理是解题关键.22、(1)12xy+10y2;(2)x(x+3)(x-3).【分析】(1)根据题意直接利用完全平方和公式以及平方差公式化简,进而合并得出答案;(2)由题意首先提取公因式x,再利用平方差公式分解因式即可.【题目详解】解:(1)(2x+3y)2-(2x+y)(2x-y)=(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2(2)x3-9x=x(x2-9)=x(x+3)(x-3)【题目点拨】本题主要考查整式的乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.23、(1)20天;(2)方案一合算【分析】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a,由此可求出甲、乙两队的施工效率,然后根据“甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成”列出关于x的分式方程,解之经检验后即可得出结论;(2)利用“总费用=单天费用×工作时间”分别求出方案一、二所需费用,比较后即可得出结论.【题目详解】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a因此,甲队的施工效率为,乙队的施工效率为由题意得:整理得:解得:经检验,是原分式方程的解,且符合题意答:规定工期为20天;(2)方案一所需费用为(万元)方案二所需费用为(万元)因故选择方案一合算.【题目点拨】本题考查了分式方程的实际应用,依据题意,正确列出分式方程是解题关键.24、(1)详见解析;(2)详见解析;(3)6【分析】(1)根据直角三角形的性质可得,,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得,进而可得,,然后即可根据AAS证明≌,可得,进一步即可证得结论;(3)连接,过点作交延长线于点,连接,如图1.先根据已知条件、三角形的内角和定理和三角形的外角性质推出,进而可得,然后即可根据SAS证明△ABE≌△ACH,进一步即可推出,过点作于K,易证△AKD≌△CHD,可得,然后即可根据等腰三角形的性质推得DF=2EF,问题即得解决.【题目详解】(1)证明:如图1,,,,,,,,;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论