版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省部分学校2024届八年级数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个长方形的周长为12cm,一边长为x(cm),则它的另一条边长y关于x的函数关系用图象表示为()A. B. C. D.2.下列因式分解正确的是()A.x2+2x+1=x(x+2)+1 B.(x2-4)x=x3-4x C.ax+bx=(a+b)x D.m2-2mn+n2=(m+n)23.直线上有三个点,,,则,,的大小关系是()A. B. C. D.4.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-6和-5之间 B.-5和-4之间 C.-4和-3之间 D.-3和-2之间5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+16.下列三条线段中,能构成三角形的是()A.3,4,8 B.5、6,7 C.5,5,10 D.5,6,117.实数a,b在数轴上的对应点如图所示,则|a﹣b|﹣的结果为()A.b B.2a﹣b C.﹣b D.b﹣2a8.如图,在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B,C为圆心,大于线段BC长度一半的长为半径画圆弧.两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED.一定正确的是()A.①②③ B.①② C.①③ D.②③9.若三边长,,,满足,则是()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形10.下列运算正确的是()A.=-2 B.=3 C.=0.5 D.11.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48° B.54° C.74° D.78°12.下列图案属于轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.14.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).15.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=°.16.若多项式分解因式的结果为,则的值为__________.17.如图,的面积为,作的中线,取的中点,连接得到第一个三角形,作中线,取的中点,连接,得到第二个三角形……重复这样的操作,则2019个三角形的面积为_________.18.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为__________.三、解答题(共78分)19.(8分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.20.(8分)如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.21.(8分)化简并求值:,其中,且均不为1.22.(10分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点频数(人数)A损坏零件50B破译密码20C乱停乱放aD私锁共享单车,归为己用bE其他30调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=;b=;m=;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.23.(10分)如图,已知经过点M(1,4)的直线y=kx+b(k≠0)与直线y=2x-3平行.(1)求k,b的值;(2)若直线y=2x-3与x轴交于点A,直线y=kx+b交x轴于点B,交y轴于点C,求△MAC的面积.24.(10分)如图所示,在平面直角坐标系中,已知、、.在平面直角坐标系中画出,则的面积是______;若点D与点C关于y轴对称,则点D的坐标为______;已知P为x轴上一点,若的面积为4,求点P的坐标.25.(12分)综合与实践已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.(1)(问题发现)如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),①证明:△ADE≌△BDF;②猜想:S△DEF+S△CEF=S△ABC.(2)(类比探究)如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.(3)(拓展延伸)如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)26.一个四位数,记千位和百位的数字之和为a,十位和个位的数字之和为b,如果a=b,那么称这个四位数为“心平气和数”例如:1625,a=1+6,b=2+5,因为a=b,所以,1625是“心平气和数”.(1)直接写出:最小的“心平气和数”是,最大的“心平气和数”;(2)将一个“心平气和数”的个位与十位的数字交换位置,同时将百位与千位的数字交换,称交换前后的这两个“心平气和数”为一组“相关心平气和数”.例如:1625与6152为一组“相关心平气和数”,求证:任意的一组“相关心平气和数”之和是11的倍数.(3)求千位数字是个位数字的3倍,且百位数字与十位数字之和是14的倍数的所有“心平气和数”.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】根据题意,可得y关于x的函数解析式和自变量的取值范围,进而可得到函数图像.【题目详解】由题意得:x+y=6,∴y=-x+6,∵,∴,∴y关于x的函数图象是一条线段(不包括端点),即B选项符合题意,故选B.【题目点拨】本题主要考查实际问题中的一次函数图象,根据题意,得到一次函数解析式和自变量的范围是解题的关键.2、C【分析】直接利用因式分解法的定义以及提取公因式法和公式法分解因式得出即可.【题目详解】解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选C.【题目点拨】此题主要考查了提取公因式法和公式法分解因式等知识,正确把握因式分解的方法是解题关键.3、A【分析】先根据函数解析式判断出一次函数的增减性,再根据各点横坐标的特点即可得出结论.【题目详解】∵直线y=kx+b中k<0,∴y随x的增大而减小,∵1.3>-1.5>−2.4,∴.故选:A.【题目点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.4、A【解题分析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【题目详解】∵点P坐标为(-4,3),点B(-1,0),
∴OB=1,
∴BA=BP==3,
∴OA=3+1,
∴点A的横坐标为-3-1,
∵-6<-3-1<-5,
∴点A的横坐标介于-6和-5之间.
故选A.【题目点拨】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解题的关键.5、B【题目详解】试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.6、B【分析】根据三角形的三边关系进行分析判断.【题目详解】解:根据三角形任意两边的和大于第三边,得
A,3+4=7<8,不能组成三角形;
B,5+6=11>7,能组成三角形;
C,5+5=10,不能够组成三角形;
D,5+6=11,不能组成三角形.
故选:B.【题目点拨】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.7、A【分析】由数轴可知a<0<b,根据绝对值的性质和二次根式的性质化简即可.【题目详解】解:由数轴可知,a<0<b,则a﹣b<0,则|a﹣b|﹣=-(a-b)-(-a)=﹣a+b+a=b.故选A.【题目点拨】本题考查的是绝对值和二次根式,熟练掌握绝对值的性质和二次根式的性质是解题的关键.8、B【分析】利用基本作图得到,则DE垂直平分BC,所以EB=EC,根据等腰三角形的性质得∠EBC=∠C,然后根据等角的余角相等得到∠A=∠EBA.【题目详解】由作法得,而D为BC的中点,所以DE垂直平分BC,则EB=EC,所以∠EBC=∠C,而,所以∠A=∠EBA,所以①②正确,故选:B.【题目点拨】本题主要考查了垂直平分线的性质及等腰三角形的性质,熟练掌握相关性质特点是解决本题的关键.9、C【分析】根据算术平方根、绝对值、完全平方式的非负数性质进行分析,可得出a,b,c的关系.【题目详解】因为,所以即所以可解得c=9,a=40,b=41因为402=1600,412=1681,92=81所以a2+c2=b2所以是直角三角形.故选:C【题目点拨】考核知识点:勾股定理逆定理.根据非负数性质求出a,b,c再根据勾股定理逆定理分析问题是关键.10、D【分析】根据二次根式的性质进行化简.【题目详解】A、,故原计算错误;B、,故原计算错误;C、,故原计算错误;D、,正确;故选:D.【题目点拨】本题考查二次根式的性质,熟练掌握相关知识是解题的关键,比较基础.11、B【解题分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.12、A【分析】根据轴对称图形的定义解答即可.【题目详解】A.是轴对称图形,故正确;B.不是轴对称图形,故错误;C.不是轴对称图形,故错误;D.不是轴对称图形,故错误.故选:A.本题考查了轴对称图形的定义.掌握轴对称图形的定义是解答本题的关键.二、填空题(每题4分,共24分)13、36°【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【题目详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.14、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【题目详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【题目点拨】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.15、1.【解题分析】试题分析:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=1°.故答案为1.考点:线段垂直平分线的性质.16、-1【分析】根据多项式的乘法法则计算,与比较求出a和b的值,然后代入a+b计算.【题目详解】∵=x2+x-2,∴=x2+x-2,∴a=1,b=-2,∴a+b=-1.故答案为:-1.【题目点拨】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.17、【分析】根据题意可知是△ABC的中位线,可得△ABC∽,相似比为2:1,故S==,同理可得S==×=,进而得到三角形的面积.【题目详解】∵是的中点,是的中线∴是△ABC的中位线∴△ABC∽,相似比为2:1,∴S==,依题意得是的中位线同理可得S=,则S==,…∴S=故答案为:.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知中位线的性质及相似三角形的性质.18、16【解题分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【题目详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.三、解答题(共78分)19、(1)①③;(2)【分析】(1)根据对称式的定义进行判断;(2)由可知,再根据对称式的定义判断即可;当时,,代入求解即可.【题目详解】(1)①③;(2)∵∴,∴的表达式都是对称式;当时,,∴,∴.【题目点拨】本题考查分式的化简求值,以对称式的方式考查,有一定的难度,需要准确理解对称式的定义.20、(1)∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE,证明见解析.【分析】(1)根据题意添加条件即可;(2)选择添加条件AC=DE,根据“HL”证明即可.【题目详解】(1)根据“ASA”,需添加的条件是∠ACB=∠DFE,根据“HL”,需添加的条件是AC=DF,故答案为:∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE证明,证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【题目点拨】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应.21、,【分析】先化简分式,再把代入求值即可.【题目详解】解:.当,且均不为1时,原式=.【题目点拨】本题考查的是分式的化简求值,掌握分式的混合运算是关键.22、(1)60;40;15;(2)扇形图中B组所在扇形的圆心角度数为36°;(3)持有D组观点的市民人数大约为20万人.【分析】(1)从统计图中得到A组有50人,占调查人数的25%,可求出调查总人数,再求得C组、D组人数和m的值,
(2)先求出B组所占的百分比,再求得所占的圆心角的度数,
(3)根据样本估计总体,样本中D组占20%,估计总体中D组也占20%,从而而求出人数.【题目详解】(1)50÷25%=200人,c=200×30%=60人,b=200×20%=40人,30÷200=15%;(2)360°×(1﹣25%﹣30%﹣20%﹣15%)=36°;答:扇形图中B组所在扇形的圆心角度数为36°.(3)100×20%=20(万人)答:持有D组观点的市民人数大约为20万人.【题目点拨】考查了条形统计图、扇形统计图的意义,解题关键是从两个统计图中获取所需数据和数据之间的关系.23、(3)k=3,b=3;(3)3.2【分析】(3)先根据两直线平行得到k=3,然后把M点坐标代入y=3x+b求出b即可;(3)求得A、B、C的坐标,然后根据S△MAC=S△AMB﹣S△ABC求得即可.【题目详解】(3)∵直线y=kx+b(k≠0)与直线y=3x-3平行,∴k=3.∵直线y=3x+b经过点M(3,4),∴3×3+b=4,∴b=3.∴k=3,b=3(3)连接AC,AM,在直线y=3x-3中,当y=0时,3x–3=0,解得x=3.2.∴点A坐标是(3.2,0)在y=3x+3中,当y=0时,3x+3=0,解得x=-3.当x=0时,y=3,∴点B的坐标是(-3,0),点C的坐标是(0,3).∴AB=OA+OB=3.2+=3.2∴S△MAC=S△AMB-S△ABC=×3.2×4-×3.2×3=3.2【题目点拨】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.24、(1)图详见解析,4;(2)
;(3)P点坐标为:或.【分析】直接利用所在矩形面积减去周围三角形面积进而得出答案;利用关于y轴对称点的性质得出答案;利用三角形面积求法得出符合题意的答案.【题目详解】如图所示:的面积是:;故答案为4;点D与点C关于y轴对称,则点D的坐标为:;故答案为;为x轴上一点,的面积为4,,点P的横坐标为:或,故P点坐标为:或.【题目点拨】此题主要考查了三角形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.25、(1)①证明见解析;②;(2)上述结论成立;理由见解析;(3)不成立;S△DEF﹣S△CEF=;理由见解析.【分析】(1)①先判断出DE∥AC得出∠ADE=∠B,再用同角的余角相等判断出∠A=∠BDF,即可得出结论;②当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形,边长是AC的一半,即可得出结论;(2)成立;先判断出∠DCE=∠B,进而得出△CDE≌△BDF,即可得出结论;(3)不成立;同(2)得:△DEC≌△DBF,得出S△DEF==S△CFE+S△ABC.【题目详解】解:(1)①∵∠C=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴∠ADE=∠B,∵∠EDF=90°,∴∠ADE+∠BDF=90°,∵DE⊥AC,∴∠AED=90°,∴∠A+∠ADE=90°,∴∠A=∠BDF,∵点D是AB的中点,∴AD=BD,在△ADE和△BDF中,∴△ADE≌△BDF(SAS);②如图1中,当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形.设△ABC的边长AC=BC=a,则正方形CEDF的边长为a.∴S△ABC=a2,S正方形DECF=(a)2=a2,即S△DEF+S△CEF=S△ABC;故答案为:.(2)上述结论成立;理由如下:连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD,∴∠DCE=∠B,∠CDB=90°,∵∠EDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴S△DEF+S△CEF=S△ADE+S△BDF=S△ABC;(3)不成立;S△DEF﹣S△CEF=S△ABC;理由如下:连接CD,如图3所示:同(2)得:△DEC≌△DBF,∠DCE=∠DBF=135°∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+S△ABC,∴S△DEF﹣S△CFE=S△ABC.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.【题目点拨】本题是几何变换综合题,考查了平行线的判定和性质,同角的余角相等,全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班月度工作计划范文
- 2024年版职工岗位聘用协议样本版B版
- 五年级上册教学计划三篇
- 服装店工作计划锦集
- 小学教学计划模板合集六篇
- 2023传染病防控工作计划
- 在酒店实习报告合集10篇
- 蓝金色大气工作汇报模板
- 五年级感恩节的作文400字5篇
- 第三季度营销策划工作总结与计划
- 山茶油知识普及课件
- 图形创意共生图形实训+讲授
- 矿山行业创新与科技进步
- 现场管理的协调与沟通
- 优化献血服务流程
- 双语学校2023-2024一二年级上学期期末无纸化测试方案
- 史上最全变电站各类设备讲解
- 教科版三年级科学上册全册知识点+全册单元测试【全册】
- 2023年MCU销售工程师年度总结及下年工作展望
- 国家开放大学2023年7月期末统一试《11130卫生法学》试题及答案-开放本科
- 烟囱工程钢筋量砼量计算模板
评论
0/150
提交评论