版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古乌海市海南区八上数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平行四边形ABCD中,对角线AC,BD交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11 B.2<m<22 C.10<m<12 D.5<m<62.()A. B. C. D.2019×20203.已知一次函数,随着的增大而减小,且,则它的大致图象是()A. B.C. D.4.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心大于的长为半径画弧,两弧交于点,作射线交边于点,若,则的面积是()A.15 B.18 C.36 D.725.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A.10° B.15° C.20° D.25°6.是一个完全平方式,则k等于()A. B.8 C. D.47.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80859095人数/人1252则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,908.若是完全平方式,则常数k的值为()A.6 B.12 C. D.9.电话卡上存有4元话费,通话时每分钟话费元,则电话卡上的余额(元)与通话时间(分钟)之间的函数图象是图中的()A. B.C. D.10.若,则下列结论正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.定义:到三角形两边距离相等的点叫做三角形的准内心.已知在中,,,,点是的准内心(不包括顶点),且点在的某条边上,则的长为______.12.分式方程=的解为_____.13.若有意义,则x的取值范围是__________14.如图,中,cm,cm,cm,是边的垂直平分线,则的周长为______cm.15.如图,在中,,,,以点为圆心,长为半径作弧,交于点,再分别以点和点为圆心,大于的长为半径作弧,两弧相交于点,作射线交于点,则的长为______.16.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是_____.17.因式分解:_____.18.如图,∠MON=30°,点A1、A2、A3、……在射线ON上,点B1、B2、B3、……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4,……均为等边三角形,若OA1=1,则△A2019B2019A2020的边长为__________三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.点P是y轴上一点.(1)写出下列各点的坐标:点A(,)、点B(,)、点C(,);(2)若S△COP=S△COA,请求出点P的坐标;(3)当PA+PC最短时,求出直线PC的解析式.20.(6分)如图,△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别于AB,AC交于点D,E,求∠BCD的度数.21.(6分)先化简,再从中选一个使原式有意义的数代入并求值;22.(8分)如图,△ABC中,∠A=60°,P为AB上一点,Q为BC延长线上一点,且PA=CQ,过点P作PM⊥AC于点M,过点Q作QN⊥AC交AC的延长线于点N,且PM=QN,连PQ交AC边于D.求证:(1)△ABC为等边三角形;(2)DM=AC.23.(8分)解答下列各题(1)如图1,方格纸中的每个小方格都是边长为1个单位长的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).①作出△ABC关于x轴对称的△A1B1C1;②如果P点的纵坐标为3,且P点到直线AA₁的距离为5,请直接写出点P的坐标.(2)我国是世界上严重缺水的国家之一为了倡导“节约用水,从我做起”,小丽同学在她家所在小区的200住户中,随机调查了10个家庭在2019年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图2①求这10个样本数据的平均数;②以上面的样本平均数为依据,自来水公司按2019年该小区户月均用水量下达了2020年的用水计划(超计划要执行阶梯式标准收费)请计算该小区2020年的计划用水量.24.(8分)如图,在和中,,,与相交于点.(1)求证:;(2)是何种三角形?证明你的结论.25.(10分)阅读理解:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是某同学用换元法对多项式进行因式分解的过程.解:设原式(第一步)(第二步)(第三步)(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的__________(填代号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)按照“因式分解,必须进行到每一个多项式因式都不能再分解为止”的要求,该多项式分解因式的最后结果为______________.(3)请你模仿以上方法对多项式进行因式分解.26.(10分)某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图,试根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)根据下表填空:a=,b=,c=;平均数(分)中位数(分)众数(分)一班ab90二班1.680c(3)请从平均数和中位数或众数中任选两个对这次竞赛成绩的结果进行分析.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据三角形三边关系判断即可.【题目详解】∵ABCD是平行四边形,AC=12,BD=10,O为AC和BD的交点,∴AO=6,BO=5,∴6-5<m<6+5,即1<m<11故选:A.【题目点拨】本题考查平行四边形的性质和三角形的三边关系,关键在于熟记三角关系.2、C【分析】首先令,进行整体代换,然后进行整式混合运算即可得解.【题目详解】令原式===2021故选:C.【题目点拨】此题主要考查利用整体代换求解整式混合运算,熟练掌握,即可解题.3、B【分析】根据随着的增大而减小可知,一次函数从左往右为下降趋势,由可得,一次函数与y轴交于正半轴,综合即可得出答案.【题目详解】解:∵随着的增大而减小,∴,一次函数从左往右为下降趋势,又∵∴∴一次函数与y轴交于正半轴,可知它的大致图象是B选项故答案为:B.【题目点拨】本题考查了一次函数图象,掌握k,b对一次函数的影响是解题的关键.4、B【解题分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC=3,根据三角形的面积公式计算即可.【题目详解】如图,作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=3,∴△ABD的面积=×AB×DE=×12×3=18,故选B.【题目点拨】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5、C【题目详解】解:∵D为BC的中点,AD⊥BC,∴EB=EC,AB=AC∴∠EBD=∠ECD,∠ABC=∠ACD.又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选C.【题目点拨】本题考查等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系.6、A【分析】根据完全平方公式:,即可得出结论.【题目详解】解:∵是完全平方式,∴解得:故选A.【题目点拨】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.7、B【解题分析】∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.8、D【解题分析】∵4a2+kab+9b2=(2a)2+kab+(3b)2,∴kab=±2⋅2a⋅3b,解得k=±12.故选D.9、D【分析】根据当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.据此判断即可.【题目详解】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.
∴,
故只有选项D符合题意.
故选:D.【题目点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10、B【分析】直接利用多项式乘法运算法则得出p的值,进而得出n的值.【题目详解】解:∵,∴(3x+2)(x+p)=3x2+(3p+2)x+2p=mx2-nx-2,∴m=3,p=-1,3p+2=-n,∴n=1,故选B.【题目点拨】此题考查了因式分解的意义;关键是根据因式分解的意义求出p的值,是一道基础题.二、填空题(每小题3分,共24分)11、或或3【分析】分三种情形①点P在AB边上,②点P在AC边上,③点P在BC边上,分别讨论计算即可.【题目详解】解:∵,,,∴,如图3中,当点在边上时,∵点是的准内心,∴,作于,于F,∵C平分∠ACB,∴PE=PF,∠PCE=45°,∴△CPE是等腰直角三角形.∵,∴PE=.∴,∴;如图4中,当点在边上时,作于,设,∵点是的准内心,∴,∵,,∴,在△BCP和△BEP中∵,∠BCP=∠BEP=90°,BP=BP,∴△BCP≌△BEP,∴,∴,∴,解得:;如图5中,当点在边上时,与当点在边上时同样的方法可得;故答案为:或或3.【题目点拨】本题考查角平分线的性质、勾股定理、等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的准内心的定义等知识,解题的关键是理解题意,学会分类讨论,属于中考常考题型.12、x=5【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】方程两边同时乘以(x-1)(x+1),得:2x+2=3x﹣3,解得:x=5,检验:当x=5时(x-1)(x+1)≠0,所以x=5是分式方程的解,故答案为:x=5.【题目点拨】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的方法以及注意事项是解题的关键.解分式方程注意要检验.13、【分析】根据二次根式的性质(被开方数大于等于0)解答.【题目详解】解:根据题意得:,解得:.故答案为:.【题目点拨】本题考查了二次根式有意义的条件,注意二次根式的被开方数是非负数.14、16【解题分析】根据垂直平分线的性质得到AD=BD,AE=BE,再根据三角形的周长组成即可求解.【题目详解】∵是边的垂直平分线,∴AD=BD,AE=BE∴的周长为AD+CD+AC=BD+CD+AC=BC+AC=10+6=16cm,故填16.【题目点拨】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的性质.15、4.1【分析】根据勾股定理计算出AB的长,再由作图可知CE垂直平分BD,然后利用等面积法计算CF即可.【题目详解】连接CD、DE、BE,由题可知,BC=DC,DE=BE,∴CE垂直平分BD,∵在Rt△ABC中,AC=1,BC=6,∴AB=,∵S△ABC=AC•BC=AB•CF,∴×1×6=×10•CF,∴CF=4.1.故答案为:4.1.【题目点拨】本题考查垂直平分线的判定,勾股定理,明确垂直平分线判定定理及勾股定理,掌握等面积法是解题关键.16、【解题分析】∵∠ABC=90°,AB=2,BC=1,∴AC==,∵CD=CB=1,∴AD=AC-CD=-1,∴AE=-1,∴点E表示的实数是-1.17、【分析】根据公式法进行因式分解即可.【题目详解】解:,故答案为:.【题目点拨】本题考查用公式法因式分解,熟练掌握公式法并灵活应用是解题的关键.18、2【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…则△An-1BnAn+1的边长为2n-1,即可得出答案.【题目详解】∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△An-1BnAn+1的边长为2n-1.则△A2019B2019A2020的边长为2.
故答案是2.【题目点拨】本题考查等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(共66分)19、(1)A(6,0),B(0,3),C(2,2);(2)P(0,);(3)直线PC的解析式为【分析】(1)x=0代入,即可求出点A坐标,把y=0代入即可求出点B坐标,求方程组的解即可求出点C的坐标;(2)设P点坐标为(0,y),根据S△COP=S△COA列方程求解即可,(3)作点C关于y轴的对称点为M(﹣2,2),求出过点A,M的直线解析式,再求直线AM与y轴的交点坐标,即求出P的坐标,即可求出直线PC的解析式.【题目详解】(1)把x=0代入,∴y=3,∴B(0,3),把y=0代入,∴x=6,A(6,0),且,∴C点坐标为(2,2),(2)∵A(6,0),C(2,2)∴S△COA,=6×2÷2=6;∵P是y轴上一点,∴设P的坐标为(0,y),∴S△COP=,∵S△COP=S△COA,∴=6,∴y=±6,∴P(0,6)或(0,﹣6).(3)如图,过点C作y轴的对称点M,连接AM与y轴交于点P,则此时PA+PC最短,∵C的坐标为C(2,2),∴点C关于y轴的对称点为M(﹣2,2),∴过点A,M的直线解析式为,∵直线AM与y轴的交点为P(0,),∴当P点坐标为(0,)时,PA+PC最短,∴直线PC的解析式为.【题目点拨】本题考查了正比例函数,解题的关键是能熟练求直线与坐标轴交点坐标.20、10°【分析】在△ABC中,利用直角三角形两锐角互余,可得∠ACB=50°,利用MN是AC的垂直平分线,可得AD=CD,进而利用等边对等角可得∠DCA=∠A=40°,即可得出结论.【题目详解】∵∠B=90°,∠A=40°,∴∠ACB=50°.∵MN是线段AC的垂直平分线,∴AD=CD,∴∠DCA=∠A=40°,∴∠BCD=∠ACB﹣∠DCA=50°﹣40°=10°.【题目点拨】掌握并理解垂直平分线的性质.等边对等角、直角三角形两锐角互余的性质来解决问题.21、,1.【分析】先将括号里的通分,再利用分式的除法法则计算,使原式有意义的数即这个数不能使分式的分母为0,据此选择即可.【题目详解】解:原式为使原式有意义所以取,则【题目点拨】本题考查了分式的混合运算,熟练掌握分式的通分和约分是进行分式加减乘除运算的关键.22、(1)见解析;(2)见解析【分析】(1)由“HL”可证,可得,从而可得结论;(2)先由(1)可知,再由AAS可证,从而由三角形全等的性质可得,然后由线段的和差即可得证.【题目详解】证明:(1),且为等边三角形;(2)由(1)已证:又,即.【题目点拨】本题考查了等边三角形的判定、三角形全等的判定定理与性质等知识点,熟记并灵活运用三角形全等的判定定理是解题关键.23、(1)①详见解析;②点P的坐标为(﹣4,3)或(6,3);(2)①6.8t;②该小区2020年的计划用水量应为16320t.【分析】(1)①由轴对称的性质先确定点A1,B1,C1的坐标,再描点,连线即可;②由P点到直线AA₁的距离为5,可知点P的横坐标为﹣4或6,由其纵坐标为3,即可写出点P坐标;(2)①根据加权平均数的计算方法求解即可;②可将①中所求10个样本数据的平均数乘以12个月,再乘以200户即可.【题目详解】解:(1)①如图1,△A1B1C1即为所求;②如图1,点P的坐标为(﹣4,3)或(6,3);(2)①(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8t,∴这10个样本数据的平均数为6.8t;②6.8×12×200=16320t,∴该小区2020年的计划用水量应为16320t.【题目点拨】本题考查了轴对称的性质,加权平均数的计算,样本估计总体等,解题关键是会认条形统计图以及在计算小区全年计划用水量时注意要乘以12个月.24、(1)见解析;(2)是等腰三角形,证明见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论