版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳临湘市2024届数学八上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图所示,下列图形不是轴对称图形的是()A. B. C. D.2.立方根等于本身的数是()A.-1 B.0 C.±1 D.±1或03.下面4组数值中,二元一次方程2x+y=10的解是()A. B. C. D.4.方程组的解中x与y的值相等,则k等于()A.-1 B.-2 C.-3 D.-45.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD6.下列调查适合抽样调查的是()A.审核书稿中的错别字 B.企业招聘,对应聘人员进行面试C.了解八名同学的视力情况 D.调查某批次汽车的抗撞击能力7.如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4 B.3 C.2 D.18.若2x+m与x+2的乘积中不含的x的一次项,则m的值为()A.-4 B.4 C.-2 D.29.如图,已知的大小为,是内部的一个定点,且,点,分别是、上的动点,若周长的最小值等于,则的大小为()A. B. C. D.10.下列图形经过折叠不能围成棱柱的是().A. B. C. D.11.下列二次根式中,最简二次根式的是()A. B. C. D.12.已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=x﹣k的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.把因式分解的结果是______.14.要使关于的方程的解是正数,的取值范围是___..15.直角三角形两直角边长分别为5和12,则它斜边上的高为____________16.在某次数学测验后,王老师统计了全班50名同学的成绩,其中70分以下的占12%,70~80分的占24%,80~90分的占36%,则90分及90分以上的有__________人.17.分式的值为0,则__________.18.满足的整数的值__________.三、解答题(共78分)19.(8分)有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?20.(8分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;(2)△ABC的面积为______;(3)判断△ABC的形状,并说明理由.21.(8分)如图,AD是△ABC的外角平分线,∠B=35°,∠DAE=60°,求∠C的度数.22.(10分)如图,是等腰直角三角形,,点是的中点,点,分别在,上,且,探究与的关系,并给出证明.23.(10分)如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.24.(10分)如图,平面直角坐标系中,.(1)作出关于轴的对称图形;作出向右平移六个单位长度的图形;(2)和关于直线对称,画出直线.(3)为内一点,写出图形变换后的坐标;(4)求的面积25.(12分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+n的图象与正比例函数y=2x的图象交于点A(m,4).(1)求m、n的值;(2)设一次函数y=﹣x+n的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数y=﹣x+n的值小于函数y=2x的值的自变量x的取值范围.26.如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】由题意根据轴对称图形的概念进行分析判断即可.【题目详解】解:A.不是轴对称图形,故此选项符合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项不合题意.故选:A.【题目点拨】本题考查轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2、D【分析】根据立方根的定义得到立方根等于本身的数.【题目详解】解:∵立方根是它本身有3个,分别是±1,1.故选:D.【题目点拨】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,1.立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)1的立方根是1.3、D【分析】把各项中x与y的值代入方程检验即可.【题目详解】A.把代入方程得:左边=﹣4+6=2,右边=1.∵左边≠右边,∴不是方程的解;B.把代入方程得:左边=4+4=8,右边=1.∵左边≠右边,∴不是方程的解;C.把代入方程得:左边=8+3=11,右边=1.∵左边≠右边,∴不是方程的解;D.把代入方程得:左边=12﹣2=1,右边=1.∵左边=右边,∴是方程的解.故选:D.【题目点拨】此题考查了解二元一次方程的解,熟练掌握运算法则是解本题的关键.4、B【解题分析】分析:首先根据方程组的解法求出x和y的值,然后根据x=y得出k的值.详解:解方程组可得:,∵x与y的值相等,∴,解得:k=-2,故选B.点睛:本题主要考查的就是二元一次方程组的解法,属于基础题型.解二元一次方程组就是利用消元的思想来进行,可以加减消元,也可以代入消元.本题中在解方程组的时候一定要讲k看作是已知数,然后进行求解得出答案.5、D【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【题目详解】解:由作图知CM=CD=DN,
∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,
∴△OMN是等边三角形,
∴∠MON=60°,
∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON,
∴∠OCD=∠OCM=,
∴∠MCD=,
又∠CMN=∠AON=∠COD,∴∠MCD+∠CMN=180°,
∴MN∥CD,故C选项正确;
∵MC+CD+DN>MN,且CM=CD=DN,
∴3CD>MN,故D选项错误;
故选D.【题目点拨】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6、D【分析】根据“抽样调查”和“全面调查”各自的特点结合各选项中的实际问题分析解答即可.【题目详解】A选项中,“审核书稿中的错别字”适合使用“全面调查”;B选项中,“企业招聘,对应聘人员进行面试”适合使用“全面调查”;C选项中,“了解八名同学的视力情况”适合使用“全面调查”;D选项中,“调查某批次汽车的抗撞击能力”适合使用“抽样调查”.故选D.【题目点拨】熟知“抽样调查和全面调查各自的特点和适用范围”是解答本题的关键.7、B【分析】根据题意逐个证明即可,①只要证明,即可证明;②利用三角形的外角性质即可证明;④作于,于,再证明即可证明平分.【题目详解】解:∵,∴,即,在和中,,∴,∴,①正确;∴,由三角形的外角性质得:∴°,②正确;作于,于,如图所示:则°,在和中,,∴,∴,∴平分,④正确;正确的个数有3个;故选B.【题目点拨】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.8、A【分析】先将(2x+m)(x+2)根据多项式乘多项式展开,找出所有含x的一次项,合并系数,使含x的一次项的系数为0,即可求出m的值.【题目详解】解:,∵乘积中不含x的一次项,∴,∴.故答案选:A.【题目点拨】本题考查多项式乘多项式的运算,属于基础题.理解不含某一项就是指含有这项的系数为0,注意合并同类项求解.9、A【分析】作P点关于OA的对称点C,关于OB的对称点D,当点E、F在CD上时,△PEF的周长最小,根据CD=2可求出的度数.【题目详解】解:如图作P点关于OA的对称点C,关于OB的对称点D,连接CD,交OA于点E,交OB于点F,此时,△PEF的周长最小;连接OC,OD,PE,PF∵点P与点C关于OA对称,∴OA垂直平分PC,,PE=CE,OC=OP,同理可得,∴,∴∵△PEF的周长为,∴△OCD是等边三角形,∴故本题最后选择A.【题目点拨】本题找到点E、F的位置是解题的关键,要使△PEF的周长最小,通常是把三边的和转化为一条线段进行解答.10、B【解题分析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.11、C【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.考点:最简二次根式.12、D【分析】利用正比例函数的性质可得出k<1,再利用一次函数图象与系数的关系可得出一次函数y=x﹣k的图象经过第一、二、三象限,进而可得出一次函数y=x﹣k的图象不经过第四象限.【题目详解】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<1.∵1>1,﹣k>1,∴一次函数y=x﹣k的图象经过第一、二、三象限,∴一次函数y=x﹣k的图象不经过第四象限.故选:D.【题目点拨】本题考查了一次函数图象与系数的关系以及正比例函数的性质,牢记“,的图象在一、二、三象限”是解题的关键.二、填空题(每题4分,共24分)13、3a(b-1)1【分析】原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=3a(b1-1b+1)=3a(b-1)1,
故答案为:3a(b-1)1.【题目点拨】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14、且a≠-3.【解题分析】分析:解分式方程,用含a的式子表示x,由x>0,求出a的范围,排除使分母为0的a的值.详解:,去分母得,(x+1)(x-1)-x(x+2)=a,去括号得,x2-1-x2-2x=a,移项合并同类项得,-2x=a+1,系数化为1得,x=.根据题意得,>0,解得a<-1.当x=1时,-2×1=a+1,解得a=-3;当x=-2时,-2×(-2)=a+1,解得a=3.所以a的取值范围是a<-1且a≠-3.故答案为a<-1且a≠-3.点睛:本题考查了由分式方程的解的情况求字母系数的取值范围,这种问题的一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.15、【分析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【题目详解】∵直角三角形的两直角边长分别为5和12,∴斜边长=∵直角三角形面积S=×5×12=×13×斜边的高,∴斜边的高=.故答案为:.【题目点拨】本题考查勾股定理及直角三角形面积,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16、1【分析】先求出90分及90分以上的频率,然后根据“频数=频率×数据总和”求解.【题目详解】90分及90分以上的频率为:1-12%-24%-36%=28%,
∵全班共有50人,
∴90分及90分以上的人数为:50×28%=1(人).
故答案为:1.【题目点拨】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.17、1【分析】分式为0,则分子为0,且分母不为0,列写关于m的方程求得.【题目详解】∵分式的值为0∴=0,且m+1≠0解得:m=1故答案为:1【题目点拨】本题考查分式为0的情况,需要注意,在求解过程中,必须还要考虑分母不为0.18、3【分析】根据与的取值范围确定整数x的范围.【题目详解】∵2<<3,3<<4,∴x是大于2小于3的整数,故答案为:3.【题目点拨】此题考查二次根式的大小,正确确定与的大小是解题的关键.三、解答题(共78分)19、最多只能安排4人种茄子.【解题分析】设安排人种茄子,根据有名合作伙伴,每人可种茄子亩或辣椒亩,已知每亩茄子可收入万元,每亩辣椒可收入万元,若要使收入不低于万元,可列不等式求解.【题目详解】安排人种茄子,依题意得:,解得:.所以最多只能安排人种茄子.20、(1)(-2,-1);(2)5;(3)△ABC是直角三角形,∠ACB=90°.【解题分析】(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【题目详解】解:(1)则B的坐标是(-2,-1).故答案是(-2,-1);(2)S△ABC=4×4-×4×2-×3×4-×1×2=5,故答案是:5;(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.【题目点拨】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.21、85°【解题分析】试题分析:先根据AD是△ABC的外角∠CAE的角平分线,∠DAE=60°求出∠CAE的度数,再根据三角形外角的性质即可得出结论.试题解析:∵AD平分∠CAE,∴∠DAE=∠CDA=60°∴∠CAE=120°∵∠CAE=∠B+∠C∴∠C=∠CAE-∠B=120°-35°=85°.22、,,证明见解析【分析】连接CD,首先根据△ABC是等腰直角三角形,∠C=90°,点D是AB的中点得到CD=AD,CD⊥AD,从而得到△DCE≌△DAF,证得DE=DF,DE⊥DF.【题目详解】,证明如下:连接∴是等腰直角三角形,∴∵为的中点.∵且平分∵∵在和中∴()∴∵于∴∴即【题目点拨】本题考查了全等三角形的判定与性质、等腰直角三角形的性质和判定,证得是解题的关键.23、(1)详见解析;(2)详见解析.【分析】(1)根据HL证明Rt△AED≌Rt△CFB得出结论;(2)证明△DBE≌△BDF,则∠DBE=∠BDF,可得出结论.【题目详解】(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,,∴Rt△AED≌Rt△CFB(HL);(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.【题目点拨】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质是解决问题的关键.24、(1)见解析;(2)见解析;(3);(4)2.5【分析】(1)由轴对称的性质,平移的性质,分别作出图形即可;(2)根据轴对称的性质,作出对称轴即可;(3)由轴对称的性质和平移的性质,即可求出点的坐标;(4)利用矩形面积减去三个小三角形的面积,即可得到答案.【题目详解】解:如图:(1),为所求;(2)直线l为所求;(3)由轴对称的性质,则点关于y轴对称的点;由平移的性质,则点关于y轴对称的点;(4)根据题意,结合网格问题,则;【题目点拨】本题考查了轴对称的性质,平移的性质,以及求三角形的面积,解题的关键是熟练掌握轴对称的性质和平移的性质,正确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店大堂的安保措施介绍
- 旅游科普服务合同
- 艺术涂料施工协议
- 市政环卫洒水车租赁合同
- 退休硬件工程师维护合同
- 租赁GPS车辆安全监控系统合同
- 临时检验员聘用合同模板
- 城市规划光纤铺设合同
- 古董家具修复喷漆协议
- 空调维修工程师聘用合同年薪制
- 《计算机视觉-基于OpenCV的图像处理》全套教学课件
- 2023年10月广东深圳市光明区马田街道办事处招聘一般专干21人笔试历年典型考题及考点剖析附答案带详解
- 《中国噬血细胞综合征诊断与治疗指南(2022年版)》解读
- 2024年社区工作者考试必背1000题题库附完整答案(全优)
- 2024-2030年中国口腔CBCT行业竞争格局分析及市场需求前景报告
- 湖南省建筑工程定额
- 大学生涯发展展示
- 人教版六年级数学上册《全册完整》课件
- 整本书阅读《平凡的世界》教案-2023-2024学年中职高一语文新教材同步教学讲堂(高教版2023·基础模块上册)
- 智慧农业鱼菜共生智能温室大棚项目可行性研究报告
- 浙江省杭州市小升初数学真题重组卷
评论
0/150
提交评论