2024届山东省微山县联考数学八上期末调研试题含解析_第1页
2024届山东省微山县联考数学八上期末调研试题含解析_第2页
2024届山东省微山县联考数学八上期末调研试题含解析_第3页
2024届山东省微山县联考数学八上期末调研试题含解析_第4页
2024届山东省微山县联考数学八上期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省微山县联考数学八上期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后过点D作一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,OC的长为半径作弧,交数轴正半轴于一点,则该点位置大致在数轴上()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间2.在平面直角坐标系中,点(1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为()A.4<AD<10 B.2<AD<5 C.1<AD< D.无法确定4.矩形的面积为18,一边长为,则另一边长为()A. B. C. D.245.满足下列条件的是直角三角形的是()A.,, B.,,C. D.6.如图,在六边形中,若,与的平分线交于点,则等于()A. B. C. D.7.下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,108.下列计算正确的是()A. B. C. D.9.已知直角三角形的两条边长分别是3cm和4cm,则它的第三边长为()A.4cm B.cm C.5cm D.5cm或cm10.如图,在中,,,于点,的平分线分别交、于、两点,为的中点,的延长线交于点,连接,下列结论:①为等腰三角形;②;③;④.其中正确的结论有()A.个 B.个 C.个 D.个11.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cmB.6cm,6cm,12cmC.5cm,5cm,2cmD.10cm,15cm,17cm12.如图,AE垂直于∠ABC的平分线交于点D,交BC于点E,CE=BC,若△ABC的面积为2,则△CDE的面积为()A. B. C. D.二、填空题(每题4分,共24分)13.点关于轴的对称点的坐标_______.14.已知是完全平方式,则的值为_________.15.肥皂泡的泡壁厚度大约是,用科学记数法表示为_______.16.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.17.如图等边,边长为6,是角平分线,点是边的中点,则的周长为________.18.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(_________)三、解答题(共78分)19.(8分)如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC于点G.

(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.20.(8分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.21.(8分)(1)计算:;(2)已知:,求的值.22.(10分)在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.23.(10分)如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连接EG,EF.(1)求证:BG=CF.(2)请你猜想BE+CF与EF的大小关系,并说明理由.24.(10分)如图所示,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;(2)若△AEF的周长为8cm,且BC=4cm,求△ABC的周长.25.(12分)先化简,再求值:,其中,再选取一个合适的数,代入求值.26.某校开学初在家乐福超市购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍.已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)购买一个A品牌、一个B品牌足球各需多少元?(2)该校响应“足球进校园”的号召,决定再次购进A、B两种品牌的足球共50个,恰逢家乐福超市对这两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果该校此次购买的总费用不超过3260元,那么,最多可以购买多少个B品牌足球?

参考答案一、选择题(每题4分,共48分)1、B【解题分析】利用勾股定理列式求出OC,再根据无理数的大小判断即可.解答:解:由勾股定理得,OC=,

∵9<13<16,

∴3<<4,

∴该点位置大致在数轴上3和4之间.

故选B.“点睛”本题考查了勾股定理,估算无理数的大小,熟记定理并求出OC的长是解题的关键.2、D【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【题目详解】点(1,-2)所在的象限是第四象限,故选D.【题目点拨】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.3、B【分析】先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得4<AE<10,从而易求2<AD<1.【题目详解】延长AD到E,使AD=DE,连接BE,如图所示:∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB-BE<AE<AB+BE,即7-3<2AD<7+3,∴2<AD<1,故选:B.【题目点拨】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.4、C【分析】根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【题目详解】解:∵矩形的面积为18,一边长为,

∴另一边长为=,

故选:C.【题目点拨】本题考查矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解题的关键.5、C【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【题目详解】A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若,,,则AC2+AB2≠CB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;故答案为:C.【题目点拨】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6、D【分析】先根据六边形的内角和,求出∠DEF与∠AFE的度数和,进而求出∠GEF与∠GFE的度数和,然后在△GEF中,根据三角形的内角和定理,求出∠G的度数,即可.【题目详解】∵六边形ABCDEF的内角和=(6−2)×180°=720°,

又∵∠A+∠B+∠C+∠D=520°,

∴∠DEF+∠AFE=720°−520°=200°,

∵GE平分∠DEF,GF平分∠AFE,

∴∠GEF+∠GFE=(∠DEF+∠AFE)=×200°=100°,

∴∠G=180°−100°=80°.

故选:D.【题目点拨】本题主要考查多边形的内角和公式,三角形内角和定理以及角平分线的定义,掌握多边形的内角和公式,是解题的关键.7、C【解题分析】选项A,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,+>5,根据三角形的三边关系可知,能够组成三角形;选项D,5+5=10,根据三角形的三边关系可知,不能够组成三角形;故选C.8、D【分析】根据合并同类项、同底数幂的乘除运算可进行排除选项.【题目详解】A、,故错误;B、,故错误;C、,故错误;D、,故正确;故选D.【题目点拨】本题主要考查合并同类项及同底数幂的乘除运算,熟练掌握合并同类项及同底数幂的乘除运算是解题的关键.9、D【分析】分4为直角边和斜边两种情况,结合勾股定理求得第三边即可.【题目详解】设三角形的第三边长为xcm,由题意,分两种情况:当4为直角边时,则第三边为斜边,由勾股定理得:,解得:x=5,当4为斜边时,则第三边为直角边,由勾股定理得:,解得:x=,∴第三边长为5cm或cm,故选:D.【题目点拨】本题考查了勾股定理,解答的关键是分类确定4为直角边还是斜边.10、D【分析】①由等腰直角三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质可得到∠AEF=∠AFE,可判断△AEF为等腰三角形,于是可对①进行判断;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断②③;连接EN,只要证明△ABE≌△NBE,即可推出∠ENB=∠EAB=90°,由此可知判断④.【题目详解】解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,∴∠BAD=∠CAD=∠C=45°,BD=AD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,∴∠AEF=∠AFE,∴AF=AE,即△AEF为等腰三角形,所以①正确;∵为的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°−67.5°=22.5°=∠MBN,在△FBD和△NAD中,∴△FBD≌△NAD(ASA),∴DF=DN,AN=BF,所以②③正确;∵AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC,故④正确,故选:D.【题目点拨】本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.11、B【解题分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【题目点拨】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.12、A【解题分析】先证明△ADB≌△EBD,从而可得到AD=DE,然后先求得△AEC的面积,接下来,可得到△CDE的面积.【题目详解】解:如图∵BD平分∠ABC,

∴∠ABD=∠EBD.

∵AE⊥BD,

∴∠ADB=∠EDB.

在△ADB和△EDB中,∠ABD=∠EBD,BD=BD,∠ADB=∠EDB,

∴△ADB≌△EBD,

∴AD=ED.∵CE=BC,△ABC的面积为2,

∴△AEC的面积为.

又∵AD=ED,

∴△CDE的面积=△AEC的面积=故选A.【题目点拨】本题主要考查的是全等三角形的判定,掌握等高的两个三角形的面积比等于底边长度之比是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可求出点的坐标.【题目详解】解:点关于轴的对称点的坐标为故答案为:.【题目点拨】此题考查的是求关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数是解决此题的关键.14、【分析】根据完全平方公式:,即可求出m的值【题目详解】解:∵是完全平方式,∴∴故答案为:【题目点拨】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.15、7×10-1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0007=7×10-1.故答案为7×10-1.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【题目详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【题目点拨】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.17、6+【分析】由等腰三角形的三线合一的性质得到BD=CD,由勾股定理求出AD,由直角三角形斜边上的中线的性质求出DE,即可求出的周长.【题目详解】解:∵AB=6,是角平分线,∴BD=CD=3,∴AD===,∵点是边的中点,∴AE=3∴DE=AB=3∴的周长=AD+AE+DE=6+故答案为6+.【题目点拨】此题主要考查了等腰三角形的性质,勾股定理,,直角三角形斜边上的中线的性质,求出DE和AD的长是解决问题的关键..18、135°【分析】本题考查的是平行四边形的性质和等腰三角形的性质解决问题即可.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADC+∠BCD=180°,∵△CDE是等腰直角三角形,∴∠EDC=∠ECD=45°,则∠ADE+∠BCE=∠ADC+∠BCD-∠EDC-∠ECD=90°,∵AD=DE,∴∠DEA=∠DAE=(180°-∠ADE),∵CE=AD=BC,∴∠CEB=∠CBE=(180°-∠BCE),∴∠DEA+∠CEB=(360°-∠ADE-∠BCE)=×270°=135°∴∠AEB=360°-∠DEC-∠DEA-∠CEB=360°-90°-135°=135°故答案为:135°.三、解答题(共78分)19、(1)见解析;(2)18cm【分析】(1)连接BE、EC,只要证明Rt△BFE≌Rt△CGE,得BF=CG,再证明Rt△AFE≌Rt△AGE得:AF=AG,根据线段和差定义即可解决.(2由AG=5cm可得AB+AC=10cm即可得出△ABC的周长.【题目详解】(1)延长AB至点M,过点E作EF⊥BM于点F∵AE平分∠BACEG⊥AC于点G∴EG=EF,∠EFB=∠EGC=90°连接BE,EC∵点D是BC的中点,DE⊥BC∴BE=EC在Rt△BFE与Rt△CGE中∴Rt△BFE≌Rt△CGE(HL)∴BF=GC∵AB+AC=AB+AG+GC∴AB+AC=AB+BF+AG=AF+AG在Rt△AFE与Rt△AGE中∴Rt△AFE≌Rt△AGE(HL)∴AF=AG∴AB+AC=2AG(2)∵AG=5cm,AB+AC=2AG∴AB+AC=10cm又∵BC=8cm∴△ABC的周长为AB+AC+BC=8+10=18cm.【题目点拨】本题考查角平分线的性质定理、全等三角形的判定和性质、线段垂直平分线的性质等知识,解题的关键是添加辅助线构造全等三角形,需要熟练掌握全等三角形的判定,属于中考常考题型.20、(1)见解析,A1(0,-1),B1(2,0),C1(4,-4);(2)(0,6)或(0,-4).【分析】(1)根据关于x轴对称的点的坐标特征写出顶点A1,B1,C1的坐标,描点即可;(2)利用割补法求得△ABC的面积,设点P的坐标为,则,求解即可.【题目详解】解:(1)作出△ABC关于x轴对称的△A1B1C1如图所示.△A1B1C1顶点坐标为:A1(0,-1),B1(2,0),C1(4,-4).(2),设点P的坐标为,则,解得或6,∴点P的坐标为(0,6)或(0,-4).【题目点拨】本题考查轴对称变换、割补法求面积,掌握关于x轴对称的点的坐标特征是解题的关键.21、(1)-3;(2)或.【分析】(1)原式利用算术平方根的定义,立方根和负整数指数评价的人运算法则进行计算,最后再进行加减运算即可;(2)方程利用平方根的定义开方即可求得方程的解.【题目详解】(1),=2-1-4=-3;(2)开方得,∴,解得,或.【题目点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22、见解析【分析】(1)根据∠ACB=90°,证∠CAD=∠BCF,再利用BF∥AC,证∠ACB=∠CBF=90°,然后利用ASA即可证明△ACD≌△CBF.(2)先根据ASA判定△ACD≌△CBF得到BF=BD,再根据角度之间的数量关系求出∠ABC=∠ABF,即BA是∠FBD的平分线,从而利用等腰三角形三线合一的性质求证即可.【题目详解】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵CE⊥AD,∴∠CAD=∠BCF,∵BF∥AC,∴∠FBA=∠CAB=45°∴∠ACB=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF;(2)证明:∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF,∴CD=BF.∵CD=BD=BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF,即BA是∠FBD的平分线.∴BA是FD边上的高线,BA又是边FD的中线,即AB垂直平分DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.23、(1)见解析;(2)BE+CF>EF,理由见解析【分析】(1)求出∠C=∠GBD,BD=DC,根据ASA证出△CFD≌△BGD即可.

(2)根据全等得出BG=CF,根据三角形三边关系定理求出即可.【题目详解】解:(1)证明:∵BG∥AC,

∴∠C=∠GBD,

∵D是BC的中点,

∴BD=DC,

在△CFD和△BGD中,∴△CFD≌△BGD,

∴BG=CF.

(2)BE+CF>EF,

理由如下:

∵△CFD≌△BGD,

∴CF=BG,

在△BGE中,BG+BE>EG,

∵△CFD≌△BGD,

∴GD=DF,ED⊥GF,

∴EF=EG,

∴BE+CF>EF.【题目点拨】本题考查了全等三角形的性质和判定,平行线的性质,线段垂直平分线性质,三角形三边关系定理的应用,主要考查学生的推理能力.24、(1)∠BOE+∠CO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论