河南省开封市金明中学2024届八年级数学第一学期期末质量检测试题含解析_第1页
河南省开封市金明中学2024届八年级数学第一学期期末质量检测试题含解析_第2页
河南省开封市金明中学2024届八年级数学第一学期期末质量检测试题含解析_第3页
河南省开封市金明中学2024届八年级数学第一学期期末质量检测试题含解析_第4页
河南省开封市金明中学2024届八年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省开封市金明中学2024届八年级数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若代数式有意义,则实数的取值范围是()A. B. C. D.2.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为()A.3 B.10 C.6.5 D.3或6.53.如图,,平分,如果射线上的点满足是等腰三角形,那么的度数不可能为()A.120° B.75° C.60° D.30°4.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC5.在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个 B.7个 C.6个 D.5个6.下列二次根式是最简二次根式的()A. B. C. D.7.中、、的对边分别是、、,下列命题为真命题的()A.如果,则是直角三角形B.如果,则是直角三角形C.如果,则是直角三角形D.如果,则是直角三角形8.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC的长为A.5 B.6 C.7 D.89.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是()A. B. C. D.10.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.411.若方程无解,则的值为()A.-1 B.-1或 C.3 D.-1或312.如图,中,于D,于E,AD交BE于点F,若,则等于(

)A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,,若,则___度(用含的代数式表示).14.如图是由4个相同的小正方形组成的网格图,点A、B、C、D、E都在格点上,则的度数为______.15.实数81的平方根是_____.16.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD②AB=CD③AB⊥BC④AO=OC其中正确的结论是_______________.(把你认为正确的结论的序号都填上)17.若实数x,y满足y=+3,则x+y=_____.18.若实数a,b满足,则a﹣b的平方根是_____.三、解答题(共78分)19.(8分)如图,在中,,为边上的任意点,为线段的中点,.(1)求证:;(2)求证:.20.(8分)已知:如图,∠B=∠D,∠1=∠2,AB=AD,求证:BC=DE.21.(8分)化简:.22.(10分)甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?23.(10分)每年的月日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为吨.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.24.(10分)如图,求出的面积,并画出关于轴对称的,写出关于轴对称的的各点坐标.25.(12分)课堂上,老师出了一道题:比较与的大小.小明的解法如下:解:,因为,所以,所以,所以,所以,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“”“=”或“”):若,则;若,则;若,则.(2)利用上述方法比较实数与的大小.26.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,写出△A1B1C1三个顶点坐标:A1=;B1=;C1=;(2)画出△A1B1C1,并求△A1B1C1面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】分式有意义的条件是分母不为.【题目详解】代数式有意义,,故选D.【题目点拨】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件.2、C【分析】分腰长为3和底边长为3两种情况,注意用三角形三边关系验证.【题目详解】若腰长为3,则底边长为此时三边长为3,3,10∵,不能组成三角形∴腰长为3不成立,舍去若底边长为3,则腰长为此时三角形三边长为6.5,6.5,3,满足三角形三边关系所以等腰三角形的腰长为6.5故选:C.【题目点拨】本题主要考查等腰三角形的定义及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.3、C【分析】分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC是度数即可得到答案.【题目详解】∵,平分,∠AOC=30,当OC=CE时,∠OEC=∠AOC=30,当OE=CE时,∠OEC=180120,当OC=OE时,∠OEC=(180)=75,∴∠OEC的度数不能是60°,故选:C.【题目点拨】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.4、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【题目详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【题目点拨】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.5、B【分析】先以三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【题目详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则BCM、BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则BCI就是等腰三角形.故选:B.【题目点拨】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.6、D【解题分析】根据最简二次根式的概念判断即可.【题目详解】A.不是最简二次根式;B.不是最简二次根式;C.不是最简二次根式;D.是最简二次根式;故选:D.【题目点拨】本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.7、D【分析】根据三角形内角和可判断A和B,根据勾股定理逆定理可判断C和D.【题目详解】解:A、∵∠A=2∠B=3∠C,∴,,∵∠A+∠B+∠C=180°,∴,∴∠A≈98°,故不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C==75°,故不符合题意;C、如果a:b:c=1:2:2,∵12+22≠22,∴不是直角三角形,故不符合题意;D、如果a:b;c=3:4:,∵,∴△ABC是直角三角形,符合题意;故选:D.【题目点拨】本题主要考查命题与定理,三角形的内角和以及勾股定理的逆定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.8、A【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【题目详解】根据题意可得MN是直线AB的中点的周长为已知,故选B【题目点拨】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.9、B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【题目详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则,将绳子对折再量长木,长木还剩余1尺,则,∴,故选B.【题目点拨】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【题目详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【题目点拨】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.11、B【分析】将分式方程化为整式方程后,分析无解的情况,求得值.【题目详解】方程两边乘最简公分母后,合并同类项,整理方程得,若原分式方程无解,则或,解得或.【题目点拨】本题考查分式方程无解的两种情况,即:1.解为增根.2.整式方程无解12、A【分析】根据垂直的定义得到∠ADB=∠BFC=90°,得到∠FBD=∠CAD,证明△FDB≌△CAD,根据全等三角形的性质解答即可.【题目详解】解:∵AD⊥BC,BE⊥AC,

∴∠ADB=∠BEC=90°,

∴∠FBD=∠CAD,

在△FDB和△CAD中,∴△FDB≌△CDA,

∴DA=DB,

∴∠ABC=∠BAD=45°,

故选:A.【题目点拨】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.二、填空题(每题4分,共24分)13、【分析】由AD=BD得∠DAB=∠DBA,再由三角形外角的性质得∠CDB=2x°;由BD=BC得∠C=∠CDB=2x°;最后由三角形内角和求出∠ABC的值.【题目详解】∵AD=BD,∴∠DAB=∠DBA,∵∠A=x°∴∠CDB=∠DAB+∠DBA=2x°;∵BD=BC,∴∠C=∠CDB=2x°;在△ABC中,∠A+∠C+∠ABC=180°∴∠ABC=180°-∠A-∠C=(180-x)°.故答案为:(180-3x).【题目点拨】本题主要考查了等腰三角形的性质以及三角形内角和定理,熟练掌握性质和定理是解题的关键.14、180°【分析】由图可得,FB=ED,∠F=∠E=90°,FC=EC,利用SAS证明△FBC≌△EDC,根据全等三角形的性质不难求出∠ABC+∠EDC的度数.【题目详解】解:由图可得:FB=ED,∠F=∠E=90°,FC=EC,∴△FBC≌△EDC(SAS),∴∠EDC=∠FBC,∴∠ABC+∠EDC=∠ABC+∠FBC=180°,故答案为:180°.【题目点拨】本题考查了全等三角形的判定和性质,准确识别图形,找出证明全等所需的条件是解题关键.15、±1【分析】根据平方根的定义即可得出结论.【题目详解】解:实数81的平方根是:±=±1.故答案为:±1【题目点拨】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.16、①②④【分析】四边形ABCD沿直线l对折后互相重合,即△ABC与△ADC关于L对称,又有AD∥BC,则有四边形ABCD为平行四边形.根据轴对称的性质可知.【题目详解】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.17、1.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.【题目详解】解:根据题意得,5﹣x≥0且x﹣5≥0,解得x≤5且x≥5,∴x=5,y=3,∴x+y=5+3=1.故答案为:1.【题目点拨】本题考查了二次根式有意义的条件,掌握二次根式的被开方数大于等零时有意义是解题的关键.18、±1【分析】根据和有意义得出a=5,b=﹣4,再代入求解即可.【题目详解】∵和有意义,则a=5,故b=﹣4,则,∴a﹣b的平方根是:±1.故答案为:±1.【题目点拨】本题考查了求平方根的问题,掌握平方根的性质以及解法是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)详见解析.【分析】(1)由等腰三角形的性质可得AD⊥BC,由余角的性质可得∠C=∠BAD=∠DAE;

(2)由“ASA”可证△ABC≌△EAF,可得AF=BC.【题目详解】证明:,为线段BE的中点,,,(2).,又,【题目点拨】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.20、见解析【分析】先利用ASA证明△ABC≌△ADE,再根据全等三角形的性质即得结论.【题目详解】证明:∵∠1=∠2,∴∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE.【题目点拨】本题考查了全等三角形的判定和性质,属于基础题型,熟练掌握全等三角形的判定和性质是解答的关键.21、【分析】根据分式的混合运算法则即可求解.【题目详解】======.【题目点拨】此题主要考查分式的运算,解题的关键是熟知其运算法则.22、甲每小时做24个零件,乙每小时做1个零件.【分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做11个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【题目详解】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=1.答:甲每小时做24个零件,乙每小时做1个零件.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、(1)甲万元,乙万元;(2)有种;(3)选购甲型设备台,乙型设备台【分析】(1)设甲型设备每台的价格为x万元,乙型设备每台的价格为y万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲型设备m台,则购买乙型设备(10−m)台,由购买甲型设备不少于3台且预算购买节省能源的新设备的资金不超过110万元,即可得出关于m的一元一次不等式组,解之即可得出各购买方案;(3)由每月要求总产量不低于2040吨,可得出关于m的一元一次不等式,解之结合(2)的结论即可找出m的值,再利用总价=单价×数量求出两种购买方案所需费用,比较后即可得出结论.【题目详解】解:(1)设甲型设备每台的价格为万元,乙型设备每台的价格为万元,根据题意得:,解得:答:甲型设备每台的价格为万元,乙型设备每台的价格为万元.(2)设购买甲型设备台,则购买乙型设备台,根据题意得:解得:∵取非负整数,∴∴该公司有种购买方案,方案一:购买甲型设备台、乙型设备台;方案二:购买甲型设备台、乙型设备台;方案三:购买甲型设备台、乙型设备台(3)由题意:,解得:,∴为或当时,购买资金为:(万元)当m=5时,购买资金为:(万元)∵,∴最省钱的购买方案为:选购甲型设备台,乙型设备台【题目点拨】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.24、;图像见解析;A2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论