版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南京师大附中树人学校八上数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知:是线段外的两点,,点在直线上,若,则的长为()A. B. C. D.2.如图,不是轴对称图形的是()A. B. C. D.3.下列分解因式正确的是A. B.C. D.4.下列乘法运算中不能用平方差公式计算的是()A.(x+1)(x﹣1) B.(x+1)(﹣x+1)C.(﹣x+1)(﹣x﹣1) D.(x+1)(﹣x﹣1)5.下列式子正确的是()A. B.C. D.6.下列等式变形是因式分解的是()A.﹣a(a+b﹣3)=a2+ab﹣3aB.a2﹣a﹣2=a(a﹣1)﹣2C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)7.一次函数y=x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.折叠长方形的一边,使点落在边的点处,若,求的长为()A. B. C. D.9.能说明命题“对于任何实数a,a2≥a”是假命题的一个反例可以是()A. B. C. D.10.9的平方根是()A.±3 B.3 C.±81 D.±3二、填空题(每小题3分,共24分)11.已知等腰三角形一个外角的度数为,则顶角度数为____________.12.如图,如果你从点向西直走米后,向左转,转动的角度为°,再走米,再向左转40度,如此重复,最终你又回到点,则你一共走了__________米.13.分式有意义的条件是__________.14.下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有__个.15.已知,.则___________,与的数量关系为__________.16.用四舍五入法将2.0259精确到0.01的近似值为_____.17.如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是______cm.18.A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.三、解答题(共66分)19.(10分)阅读下列解题过程:已知,,为△ABC的三边长,且满足,试判断△ABC的形状.解:∵,①∴.②∴.③∴△ABC是直角三角形.④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为.(2)错误的原因为.(3)请你将正确的解答过程写下来.20.(6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)21.(6分)“绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?22.(8分)(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).23.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.24.(8分)如图,、、的平分线交于.(1)是什么角?(直接写结果)(2)如图2,过点的直线交射线于点,交射线于点,观察线段,你有何发现?并说明理由.(3)如图2,过点的直线交射线于点,交射线于点,求证:;(4)如图3,过点的直线交射线的反向延长线于点,交射线于点,,,,求的面积.25.(10分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,若直线AD与BC相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.(2)如图2,若直线AD与CB的延长线相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.26.(10分)某校八年级举行数学趣味竞赛,购买A,B两种笔记本作为奖品,这两种笔记本的单价分别是12元和8元.根据比赛设奖情况,需购买两种笔记本共30本,并且购买A笔记本的数量要少于B笔记本数量的,但又不少于B笔记本数量的.(1)求A笔记本数量的取值范围;(2)购买这两种笔记本各多少本时,所需费用最省?最省费用是多少元?
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据已知条件确定CD是AB的垂直平分线即可得出结论.【题目详解】解:∵AC=BC,
∴点C在AB的垂直平分线上,
∵AD=BD,
∴点D在AB的垂直平分线上,
∴CD垂直平分AB,
∵点在直线上,∴AP=BP,∵,∴BP=5,故选B.【题目点拨】本题主要考查了线段的垂直平分线,关键是熟练掌握线段的垂直平分线的性质.2、A【分析】根据轴对称图形的概念对各选项进行分析即可得出结论.【题目详解】A.不是轴对称图形,故本选项正确;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.是轴对称图形,故本选项错误.故选:A.【题目点拨】本题考查了轴对称图形的识别,掌握轴对称图形的概念是解答本题的关键.3、C【解题分析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【题目详解】A.,分解因式不正确;B.,分解因式不正确;C.,分解因式正确;D.2,分解因式不正确.故选:C【题目点拨】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.4、D【分析】根据平方差公式的特点逐个判断即可.【题目详解】解:选项A:(x+1)(x-1)=x2-1,故选项A可用平方差公式计算,不符合题意,选项B:(x+1)(-x+1)=1-x2,故选项B可用平方差公式计算,不符合题意,选项C:(-x+1)(-x-1)=x2-1,故选项C可用平方差公式计算,不符合题意,选项D:(x+1)(-x-1)=-(x+1)2,故选项D不可用平方差公式计算,符合题意,故选:D.【题目点拨】此题考查平方差公式,属于基础题,关键是根据平方差公式的形式解答.5、D【分析】根据合并同类项法则,幂的乘方和积的乘方,同底数幂的除法求出每个式子的值,再判断即可.【题目详解】解:、,故本选项不符合题意;、,故本选项不符合题意;、,故本选项不符合题意;、,故本选项符合题意;故选:.【题目点拨】本题考查了合并同类项法则,幂的乘方和积的乘方,同底数幂的除法等知识点,能正确求出每个式子的值是解此题的关键.6、C【分析】根据因式分解的定义逐个判断即可.【题目详解】解:A、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;B、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、符合因式分解的定义,是因式分解,故本选项符合题意;D、右边不是几个整式的积的形式(含有分式),不是因式分解,故本选项不符合题意;故选:C.【题目点拨】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.7、D【解题分析】试题分析:一次函数y=x+3的图象过一、二、三象限,故选D.考点:一次函数的图象.8、A【分析】在Rt△ABF中,根据勾股定理求出BF的值,进而得出FC=BC-BF=10-6=4cm.在Rt△EFC中,根据勾股定理即可求出EC的长.【题目详解】设EC的长为xcm,∴DE=(8-x)cm.∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6cm.∴FC=BC-BF=10-6=4cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=1.∴x=2.故EC的长为2cm.故答案为:A.【题目点拨】本题考查了图形的翻折的知识,翻折中较复杂的计算,需找到翻折后相应的直角三角形,利用勾股定理求解所需线段.9、D【分析】根据题意、乘方的意义举例即可.【题目详解】解:当a=0.2时,a2=0.04,∴a2<a,故选D.【题目点拨】本题考查的是命题的真假判断,正确举出反例是解题的关键.10、D【解题分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【题目详解】∵(±3)2=9,∴9的平方根是±3,故选D.【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题(每小题3分,共24分)11、或【分析】等腰三角形的一个外角等于,则等腰三角形的一个内角为72°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【题目详解】∵一个外角为,∴三角形的一个内角为72°,当72°为顶角时,其他两角都为、,当72°为底角时,其他两角为72°、36°,所以等腰三角形的顶角为或.故答案为:或【题目点拨】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.12、1.【分析】根据题意转动的角度为°,结合图我们可以知道,最后形成的正多边形的一个外角是40°,利用多边形的外角和可求出是正几边形,即可求得一共走了多少米.【题目详解】解:360°÷40=9(边)9×25=1(米)故答案为:1【题目点拨】本题主要考查的是正多边形的性质以及多边形的外角和公式,掌握以上两个知识点是解题的关键.13、【分析】根据分式的性质即可求出.【题目详解】∵是分式,∴∴【题目点拨】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.14、3【解题分析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,(每两个1之间依次多一个2)是无理数,其余的都是有理数,即上述各数中,无理数有3个.15、4【分析】由同底数的除法可得:从而可得:的值,由,可得可得从而可得答案.【题目详解】解:,,故答案为:.【题目点拨】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.16、2.1【分析】把千分位上的数字5进行四舍五入即可.【题目详解】解:2.0259精确到0.01的近似值为2.1.故答案为:2.1.【题目点拨】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.17、1【分析】把长方体展开为平面图形,分两种情形求出AB的长,比较即可解答.【题目详解】把长方体展开为平面图形,分两种情形:如图1中,AB=,如图2中,AB=,∵1<4,∴爬行的最短路径是1cm.故答案为1.【题目点拨】本题考查平面展开-最短路径问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18、1.【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【题目详解】解:设甲车的速度为a千米/小时,乙车的速度为b千米/小时,,解得,∴A、B两地的距离为:80×9=720千米,设乙车从B地到C地用的时间为x小时,60x=80(1+10%)(x+2﹣9),解得,x=22,则B、C两地相距:60×22=1(千米)故答案为:1.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(共66分)19、(1)③;(2)忽略了的可能;(3)见解析【分析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【题目详解】(1)根据题意可知,∵由,∴通过移项得,故③错误;(2)由(1)可知,错误的原因是:忽略了的可能;(3)正确的写法为:∵,∴,∴,∴,∴或,∴或,∴是等腰三角形或直角三角形或等腰直角三角形;故答案为是等腰三角形或直角三角形或等腰直角三角形【题目点拨】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.20、【解题分析】试题分析:可分别选择不同的直线当对称轴,得到相关图形即可.试题解析:如图所示:考点:利用轴对称设计图案21、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【分析】(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,根据数量=总价单价,结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于的分式方程,解方程检验即可.(2)设购买A型净水器台,则购买B型净水器为(50-)台,根据购买资金=A型净水器的进价购买数量+B型净水器的进价购买数量不超过9.8万元即可得出关于的一元一次不等式,解之即可得出的取值范围,也就得出最多可购买A型净水器的台数.【题目详解】解:(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,由题意,得解得=2000经检验,=2000是分式方程得解∴-200=1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)设购买A型净水器台,则购买B型净水器为(50-)台,由题意,得2000+1800(50-)≤98000解得≤40答:最多可以购买A型净水器40台.故答案为(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【题目点拨】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系列出一元一次不等式方程.22、(1)①1°;②1°;(2)∠BFE=α.【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【题目详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=1°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=1°.故答案为1.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=1°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=1°.故答案为1.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【题目点拨】本题综合考查了三角形全等以及三角形外角和定理.23、(1)y=-x+6;(2)12;(3)或.【分析】(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【题目详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:,解得:,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:,即直线OA的解析式是:,∵△ONC的面积是△OAC面积的,∴点N的横坐标是,当点N在OA上时,x=1,y=,即N的坐标为(1,),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,或.【题目点拨】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.24、(1)直角;(2)DE=CE,理由见解析;(3)理由见解析;(4)1.【分析】(1)根据两直线平行同旁内角互补可得∠BAM+∠ABN=110°,然后由角平分线的定义可证∠BAE+∠ABE=90°,进而可得∠AEB=90°;(2)过点E作EF⊥AM,交AM与F,交BN于H,作EG⊥AB于G.由角平分线的性质可证EF=EH,然后根据“AAS”证明△CEF≌△DEH即可;(3)在AB上截取AF=AC,连接EF,可证△ACE≌△AFE,得到∠AEC=∠AEF,进而证出∠FEB=∠DEB,然后再证明△BFE≌△BDE,可得结论;(4)延长AE交BD于F,由三线合一可知AB=BF=5,AE=EF,根据“AAS”证明△ACE≌△FDE,可得DF=AC=3,设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,根据S△ABE﹣S△ACE=2,求出x的值,进而可求出△BDE的面积.【题目详解】解:(1)∵AM//BN,∴∠BAM+∠ABN=110°,∵AE平分∠BAM,BE平分∠ABN,∴∠BAE=BAM,∠ABE=∠ABN,∴∠BAE+∠ABE=(∠BAM+∠ABN)=90°,∴∠AEB=90°;(2)如图,过点E作EF⊥AM,交AM与F,交BN于H,作EG⊥AB于G.∵AE平分∠BAM,BE平分∠ABN,∴EF=EG=EH.∵AM//BN,∴∠CFE=∠EHD.在△CEF和△DEH中,∵∠CFE=∠DHE=90°,∠CFE=∠EHD,EF=EH,∴△CEF≌△DEH,∴DE=CE;(3)在AB上截取AF=AC,连接EF,在△ACE与△AFE中,,∴△ACE≌△AFE,∴∠AEC=∠AEF,∵∠AEB=90°,∴∠AEF+∠BEF=∠AEC+∠BED=90°,∴∠FEB=∠DEB,在△BFE与△BDE中,,∴△BFE≌△BDE,∴BF=BD,∵AB=AF+BF,∴AC+BD=AB;(4)延长AE交BD于F,∵∠AEB=90°,∴BE⊥AF,∵BE平分∠ABN,∴AB=BF=5,AE=EF,∵AM//BN,∴∠C=∠EDF,在△ACE与△FDE中,,∴△ACE≌△FDE,∴DF=AC=3,∵BF=5,∴设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,∵S△ABE﹣S△ACE=2,∴5x﹣3x=2,∴x=1,∴△BDE的面积=1.【题目点拨】本题考查了平行线的性质,角平分线的定义,等腰三角形的性质,三角形的面积,以及全等三角形的判定和性质,掌握全等三角形的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防设施电伴热施工合同
- 建筑拆除施工总价承包合同
- 互联网公司CTO招聘合同样本
- 物流运输木门更换工程合同
- 汽车维修项目审计要点
- 建筑隔震工程倒板施工协议
- 媒体行业薪酬分配改革管理办法
- 网络文学改编剧招聘合同
- 咨询公司公关部聘用合同
- 建筑检测探伤施工合同
- 大学生生涯发展展示 (修改)
- 2024年鄂尔多斯市国资产投资控股集团限公司招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 校企共建实验室方案
- 2024年电商直播行业现状及发展趋势研究
- 2021年4月自考04735数据库系统原理试题及答案含解析
- MOOC 管理学原理-东北财经大学 中国大学慕课答案
- 农贸市场食品安全事故处置方案
- 六年级语文总复习课《修改病句》修改课件市公开课一等奖省赛课获奖课件
- (2024年)部队战备教育教案x
- 《焚烧烟气净化产物资源化利用 工业用盐》编制说明
- 《交互设计》课件
评论
0/150
提交评论