![构造几何图形解决代数问题_第1页](http://file4.renrendoc.com/view/7b859f7600d99b29bee6aa9c39c061cd/7b859f7600d99b29bee6aa9c39c061cd1.gif)
![构造几何图形解决代数问题_第2页](http://file4.renrendoc.com/view/7b859f7600d99b29bee6aa9c39c061cd/7b859f7600d99b29bee6aa9c39c061cd2.gif)
![构造几何图形解决代数问题_第3页](http://file4.renrendoc.com/view/7b859f7600d99b29bee6aa9c39c061cd/7b859f7600d99b29bee6aa9c39c061cd3.gif)
![构造几何图形解决代数问题_第4页](http://file4.renrendoc.com/view/7b859f7600d99b29bee6aa9c39c061cd/7b859f7600d99b29bee6aa9c39c061cd4.gif)
![构造几何图形解决代数问题_第5页](http://file4.renrendoc.com/view/7b859f7600d99b29bee6aa9c39c061cd/7b859f7600d99b29bee6aa9c39c061cd5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
#构造几何图形解决代数问题摘要数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”本课题调查研究中主要研究“以形助数”的情形。关键词数形结合解题以形助数教学1•“以形助数”的思想应用1.1解决集合问题:在集合运算中常常借助于数轴、Venn图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。例:已知集合A=[0,4],B=[-2,3],求A"〕B。分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出AjB=[0,3]B=[-2,3]A=[0,4]X.4B=[-2,3]A=[0,4]X.4例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为分析:如下图,设所求人数为x,则只喜爱乒乓球运动的人数为10-(15-x)=x-5,故15+x-5=30-8nx=12两B:只喜爱工入15__两B:只喜爱工入15__尢人5人两种运动卜只喜曙I樋磁动评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。1・2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。例:(2009山东理)若函数f(x)=ax-x-a(a>0且a丰1)有两个零点,则实数a的取值范围是分析:设函数y=ax(a>0,且a丰1)和函数y二x+a,则函数f(x)=ax-x-a(a>0且a丰1)有两个零点,就是函数y=ax(a>0,且a丰1)与函数y=x+a有两个交点,由图象可知当0va<1时两函数只有一个交点,不符合,当a>1时,因为函数y二ax(a>1)的图象过点(0,1),而直线y二x+a所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实
时,若只采用代数的方法思考问题,往往会太过于抽象或无从下手。但如果根据函数的定义,引入图象,使所求的问题具体化,可从图中一目了然,则达到事半
功倍的效果。1.3解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图像的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。例:若方程lg(-x2+3x-m)=lg(3_x)在xe(°,3)内有唯一解,求实数m的取值范围。分析:原方程可化为-(x-2)2+1=m(0<x<3),设y=一(x一2)2+1(0<x<3),y=m12在同一坐标系中画出它们的图像,如下图,由原方程在(0,3)内有唯一解,知y与y的图象只有一个公共点,可见m的取值范围是-l<m<0或m=l。12例:已知不等式/x+1)27x一2)2>m对一切实数x恒成立,求实数m取值。分析:J(x+1)2表示数轴上点X到点(-1)的距离,J(x-2)2表示数轴上点X到点2的距离。数轴上点X到点(-1)的距离与点X到点2的距离的和的最小值为3,即x+1)2+Q(x-2)2>3,所以实数m的范围是:m<3.评价:方程问题和不等式问题归根结底也就是函数问题的变形,只要我们根据题意条件循序渐进地找出突破口,便可同样很好地利用图象简捷地解决。1.4解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。sinx+2y=~例:求cosx-2最值分析:我们可以把(cosx,sinx)看成是单位圆周上的一点,sinx+2可以理解cosx-2为点(cosx,sinx)与点(2,-2)连线的斜率。由图可知,斜率的最大值与最小值应为通过点(2,-2)且与单位圆相切的两条切线的斜率,设点(2,-2)且与单位圆相切的直线方程为:y+2=k(x-2),利用圆心(0,0)到切线的距离为圆的半径1,可以求出斜率k的范围:4?<k<土2,所以33评价:三角函数的图象和性质是高考的热点,在解题时要灵活运用数形结合的思想,把图像和性质结合起来,通过图象直观地感受题目的要义,为解题提供方便。1.5解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。例:(08年高考湖南卷理改编)已知变量x,y满足条件x-1,x-y<°,x+2y-9<0,求x+y的最大值。分析:本题实质是线性规划问题,运用图象画平面区域,再求线性目标函数的最值。如图所示,可行域为图中阴影部分(包括边界线),则z=x+y在A点处取得,3),,3),故最大值为3+3=6.评价:线性规划位于不等式和直线方程的结合点,是培养学生转化能力和熟练运用数形结合能力的重要内容。1・6解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。例:若数列为等差数列,"p二q,舄二P,求ap+q分析:如图,由于等差数列中a的图象是一条直线上均匀排开的孤立的点,故n三点A(p,q),B(q,p),C(p+q,m)共线,所以k二k,即—_-=mP,得ABACq-pp+q-qm=0,即a=0p+q评价:人们在解决数列问题时,习惯用代数的思维方法,如果将数形结合的数学思想渗透到数列中,运用数形结合的思想和方法看待和解决数列问题,往往会有异样的收获。2•“以形助数”的思想总结2.1“数”转化为“形”问题的途径和基本思路2.1.1数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题。2.1.2对于“数”转化为“形”这类问题,解决问题的基本思路:明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再做出或构造出与之相适合的图形,最后利用已经做出或构造出的图形的性质、几何意义等,联系所要求解(求解)的目标去解决问题。2.1.3常见“以形助数”的方法:(1)借助于数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补、运算等问题是非常有效的。(2)借助于函数图像,利用函数图象分析问题和解决问题是数形结合的基本方法。2.2“数形结合”思想在解题过程中注意点数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。2.3数形结合的意义数学是研究现实世界的空间形式和数量关系的科学,也就是数与形,数与形是中学数学主体,是中学数学论述的两个重要内容。“数”与“形”既有区别,又有联系,“坐标法”实现了它们之间的转化。“数形结合”的思想不仅使几何、代数、三角知识相互渗透融于一题,又能提示问题的裨益,在解题方法上简洁明快,独辟蹊径,能开发智力,培养创造性思维提高分析问题和解决问题的能力。华罗庚教授曾指出:“数形结合百般好,隔裂分家万事非。”由此可见数形结合思想在教学中的重要地位,它是数学思想方法的核心。因此,应用数行结合的思想,可以解决许多复杂的代数问题。2.4数形结合思想在教学中的重要性2.4.1加强数形结合思想的概念教育数学中的“数形结合”思想大部分源于概念教学过程,加强对基本概念的教学,是掌握数形结合的基础。在正常的教学活动中,教师要有意识的将抽象概念知识形象化,使学生加深对概念的理解和掌握,为以后利用概念不同的表达形式来解决复杂多变的数学问题打下坚实的基础。特别是一些明显具有几何意义的概念,如复数的模、直线的斜率、导数等,这些就需要老师在讲解其文字意义的同时赋予图形表征,这样学生便能更容易接受,而且记忆深刻,遇到题目时能够想到相关知识进而灵活应用。因此,我觉得对数形结合的概念教育也是不可忽视的环节,它不仅可以帮助教师得心应手地进行课堂教学,而且也有助于学生开发其创新意识和提高思维能力。2.4.2如何应用好“数形结合”思想?(1)结合学生的认真结构循序渐进地逐步渗透数学思想。教学不是对角戏,而是教师与学生进行沟通交流的过程,教师的责任不仅仅是将知识填鸭式的写在黑板上让学生记住,而是以学生为主体,根据他们的需要和能力制定适当的教学目标和教学计划。数学教育亦是如此,鉴于数学本身就是一门较为难学的科目,所以更要循序渐进地向学生传授数学思想。在解决问题的过程中,潜移默化地理解“数形结合”思想,所以不仅要结合问题,而且要考虑学生的认知结构。在学习中不断积累数形结合的素材,让学生逐步体会数形结合的优点。这样学生就可以循序渐进地理解运用这一数学思想,从而不断提高学生的数学品质和素养。(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编版语文四年级下册第二单元任务群整体公开课一等奖创新教学设计
- AI在医学影像分析中的应用
- 人工智能AI对人形机器人发展的影响
- 惠州学院《劳动通论》2023-2024学年第二学期期末试卷
- 黑龙江三江美术职业学院《数据挖掘B》2023-2024学年第二学期期末试卷
- 常州机电职业技术学院《管理学概论》2023-2024学年第二学期期末试卷
- 萍乡学院《小税种与税收征管》2023-2024学年第二学期期末试卷
- 甘肃医学院《智能计算与最优化》2023-2024学年第二学期期末试卷
- 2024年02月天津2024年兴业银行天津分行春季校园招考笔试历年参考题库附带答案详解
- 2025年潮牌合作协议书
- 中考语文一轮专题复习:《现代文阅读的命题特点及教学策略》课件
- 《抗生素培训》课件
- 带电作业流程及安全注意事项
- 灰坝施工组织设计
- 焊接接头射线检测报告
- 韩国《寄生虫》电影鉴赏解读
- 走进奇妙的几何世界
- 三对三篮球赛记录表
- 矿山电工知识点讲解
- 物业公司服务质量检查流程
- 磷酸铁锂动力电池生产工艺全流程详述
评论
0/150
提交评论