![2024届湖北省武汉市武昌区C组联盟八上数学期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view/0ee3304e0cdcfead07085f9e475b6b49/0ee3304e0cdcfead07085f9e475b6b491.gif)
![2024届湖北省武汉市武昌区C组联盟八上数学期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view/0ee3304e0cdcfead07085f9e475b6b49/0ee3304e0cdcfead07085f9e475b6b492.gif)
![2024届湖北省武汉市武昌区C组联盟八上数学期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view/0ee3304e0cdcfead07085f9e475b6b49/0ee3304e0cdcfead07085f9e475b6b493.gif)
![2024届湖北省武汉市武昌区C组联盟八上数学期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view/0ee3304e0cdcfead07085f9e475b6b49/0ee3304e0cdcfead07085f9e475b6b494.gif)
![2024届湖北省武汉市武昌区C组联盟八上数学期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view/0ee3304e0cdcfead07085f9e475b6b49/0ee3304e0cdcfead07085f9e475b6b495.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省武汉市武昌区C组联盟八上数学期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.42.如果一个三角形的一个顶点是它的三条高的交点,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形3.如图,在中,平分,平分,且交于,若,则的值为A.36 B.9 C.6 D.184.下列图案中,是轴对称图形的有()个A.1 B.2 C.3 D.45.如果多项式的一个因式是,那么另一个因式是()A. B. C. D.6.如图,以的三边为边,分别向外作正方形,它们的面积分别为、、,若,则的值为()A.7 B.8 C.9 D.107.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示.根据图象求得y与t的关系式为,这里的常数“-1.5”,“25”表示的实际意义分别是()A.“-1.5”表示每小时耗油1.5升,“25”表示到达乙地时油箱剩余油25升B.“-1.5”表示每小时耗油1.5升,“25”表示出发时油箱原有油25升C.“-1.5”表示每小时耗油1.5升,“25”表示每小时行驶25千米D.“-1.5”表示每小时行驶1.5千米,“25”表示甲乙两地的距离为25千米8.如图,已知为等腰三角形,,将沿翻折至为的中点,为的中点,线段交于点,若,则()A. B. C. D.9.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为()A. B.或 C.或 D.10.若代数式在实数范围内有意义,则实数的取值范围为()A. B. C. D.11.分式和的最简公分母()A. B. C. D.12.若函数是正比例函数,则的值为()A.1 B.0 C. D.二、填空题(每题4分,共24分)13.=______;14.若一次函数、的图象相交于,则关于x、y的方程组的解为______.15.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2.0),点(0,1),有下列结论:①关于x的方程kx十b=0的解为x=2:②关于x方程kx+b=1的解为x=0;③当x>2时,y<0;④当x<0时,y<1.其中正确的是______(填序号).16.点P关于轴的对称点坐标为________.17.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.18.如图,在中,是的垂直平分线,,则的周长为______.三、解答题(共78分)19.(8分)计算:(1);(2)(-2)×-6;(3);(4).20.(8分)已知:如图,在四边形中,,点是的中点.(1)求证:是等腰三角形:(2)当=°时,是等边三角形.21.(8分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.22.(10分)如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.23.(10分)小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的倍,两人在同起点,同时出发,结果小强先到目的地分钟.①当,时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含的式子表示).24.(10分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.25.(12分)已知:∠AOB=30°,点P是∠AOB内部及射线OB上一点,且OP=10cm.(1)若点P在射线OB上,过点P作关于直线OA的对称点,连接O、P,如图①求P的长.(2)若过点P分别作关于直线OA、直线OB的对称点、,连接O、O、如图②,求的长.(3)若点P在∠AOB内,分别在射线OA、射线OB找一点M,N,使△PMN的周长取最小值,请直接写出这个最小值.如图③26.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x,y轴的距离中的最大值等于点Q到x,y轴的距离中的最大值,则称P,Q两点为“等距点”图中的P,Q两点即为“等距点”.(1)已知点A的坐标为.①在点中,为点A的“等距点”的是________;②若点B的坐标为,且A,B两点为“等距点”,则点B的坐标为________.(2)若两点为“等距点”,求k的值.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题分析:根据角平分线的性质可得:点D到AB和AC的距离相等,根据题意可得:△ABD的面积为9,△ADC的面积为6,则AC的长度=6×2÷3=4.考点:角平分线的性质2、B【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【题目详解】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形,故正确;C、钝角三角形,三条高线不会交于一个顶点,故错误;D、等边三角形,三条高线交点在三角形内,故错误.故选B.【题目点拨】主要考查学生对直角三角形的性质的理解及掌握.3、A【分析】先根据角平分线的定义、角的和差可得,再根据平行线的性质、等量代换可得,然后根据等腰三角形的定义可得,从而可得,最后在中,利用勾股定理即可得.【题目详解】平分,平分,,,,,,,,在中,由勾股定理得:,故选:A.【题目点拨】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.4、B【分析】根据轴对称图形的概念求解即可.【题目详解】①不是轴对称图形,故此选项不合题意;
②是轴对称图形,故此选项正确;
③是轴对称图形,故此选项正确;
④不是轴对称图形,故此选项不合题意;是轴对称图形的有2个
故选:B.【题目点拨】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、A【分析】多项式先提取公因式,提取公因式后剩下的因式即为所求.【题目详解】解:,故另一个因式为,故选:A.【题目点拨】此题考查了因式分解提取因式法,找出多项式的公因式是解本题的关键.也是解本题的难点,要注意符号.6、B【分析】根据正方形的面积公式及勾股定理即可求得结果.【题目详解】因为是以的三边为边,分别向外作正方形,所以AB2=AC2+BC2所以因为所以=8故选:B【题目点拨】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.7、B【解题分析】试题分析:根据一次函数的实际应用可得:-1.5表示每小时耗油1.5升,25表示出发前油箱原有油25升.考点:一次函数的实际应用8、D【分析】连接,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【题目详解】解:如图,连接,设,则,∵为的中点,,∴故选:D.【题目点拨】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.9、C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【题目详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【题目点拨】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.10、D【分析】直接利用分式有意义的条件得出答案.【题目详解】解:∵代数式在实数范围内有意义,∴实数a的取值范围为:a-1≠0,解得:a≠1.故选:D.【题目点拨】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.11、C【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,即可得出答案.【题目详解】=,,所以最简公分母为:.故选:C.【题目点拨】考查了最简公分母的定义及确定方法,解题关键利用了:确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.12、A【分析】先根据正比例函数的定义列出关于k的方程组,求出k的值即可.【题目详解】∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得:k=1.故选A.【题目点拨】本题考查的是正比例函数的定义,即形如y=kx(k≠0)的函数叫正比例函数.二、填空题(每题4分,共24分)13、【分析】分别计算零指数幂和负指数幂,然后把结果相加即可.【题目详解】解:==.故答案为:.【题目点拨】本题考查零指数幂和负指数幂.理解任意非零数的零指数幂都等于0和灵活运用负指数幂的计算公式是解题关键.14、【分析】关于x、y的二元一次方程组的解即为直线y=ax+b(a≠0)与y=cx+d(c≠0)的交点P(-1,3)的坐标.【题目详解】∵直线y=ax+b(a≠0)与y=cx+d(c≠0)相交于点P(-1,3),∴关于x、y的二元一次方程组的解是.故答案为.【题目点拨】本题考查了一次函数与二元一次方程(组),解题的关键是熟练的掌握一次函数与二元一次方程组的相关知识点.15、①②③【分析】根据一次函数的图象与性质判断即可.【题目详解】①由一次函数y=kx+b的图象与x轴点(2.0)知,当y=0时,x=2,即方程kx+b=0的解为x=2,故此项正确;②由一次函数y=kx+b的图象与y轴点(0,1),当y=1时,x=0,即方程kx+b=1的解为x=0,故此项正确;③由图象可知,x>2的点都位于x轴的下方,即当x>2时,y<0,故此项正确;④由图象可知,位于第二象限的直线上的点的纵坐标都大于1,即当x<0时,y﹥1,故此项错误,所以正确的是①②③,故答案为:①②③.【题目点拨】本题考查了一次函数的图象与性质,涉及一次函数与一元一次方程的关系、一次函数与不等式的关系,解答的关键是会利用数形结合思想解决问题.16、【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【题目详解】解:由点P关于轴的对称点坐标为;故答案为.【题目点拨】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.17、50【解题分析】试题分析:由AC=AD=DB,可知∠B=∠BAD,∠ADC=∠C,设∠ADC=x,可得∠B=∠BAD=x,因此可根据三角形的外角,可由∠BAC=105°,求得∠DAC=105°-x,所以在△ADC中,可根据三角形的内角和可知∠ADC+∠C+∠DAC=180°,因此2x+105°-x=180°,解得:x=50°.考点:三角形的外角,三角形的内角和18、10【分析】首先根据线段垂直平分线的性质,得出AD=CD,然后将的周长进行边长转换,即可得解.【题目详解】∵是的垂直平分线,∴AD=CD∵,∴的周长为:AB+BD+AD=AB+BD+DC=AB+BC=3+7=10故答案为:10.【题目点拨】此题主要考查线段垂直平分线的性质,熟练掌握,即可解题.三、解答题(共78分)19、(1)2;(2)-6;(3);(4).【分析】(1)按照二次根式的运算法则先乘后加减,计算即可;(2)按照二次根式的运算法则先去括号,然后进行减法运算即可;(3)运用代入消元法进行求解即可;(4)利用加减消元法进行求解即可.【题目详解】(1)原式==2-1-0+1=2(2)原式===(3)将②代入①,得解得,代入②,得∴方程组的解为(4),得③③×3,得④②×4,得⑤④-⑤,得解得,代入②,得∴方程组的解为【题目点拨】此题主要考查二次根式的混合运算以及二元一次方程组的求解,熟练掌握,即可解题.20、(1)证明见解析;(2)150.【解题分析】试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得BE=AC,DE=AC,从而得到BE=DE.
(2)利用等边对等角以及三角形外角的性质得出∠DEB=∠DAB,即可得出∠DAB=30°,然后根据四边形内角和即可求得答案.试题解析:证明:(1)∵∠ABC=∠ADC=90°,点E是AC边的中点,
∴BE=AC,DE=AC,
∴BE=DE,
∴△BED是等腰三角形;
(2)∵AE=ED,
∴∠DAE=∠EDA,
∵AE=BE,
∴∠EAB=∠EBA,
∵∠DAE+∠EDA=∠DEC,
∠EAB+∠EBA=∠BEC,
∴∠DAB=∠DEB,
∵△BED是等边三角形,
∴∠DEB=60°,
∴∠BAD=30°,
∴∠BCD=360°-90°-90°-30°=150°.21、(1)见解析;(2)见解析;(3)不一定成立,见解析.【解题分析】(1)求证AB=AC,就是求证∠B=∠C,利用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC即可;
(2)首先得出Rt△OEB≌Rt△OFC,则∠OBE=∠OCF,由等边对等角得出∠OBC=∠OCB,进而得出∠ABC=∠ACB,由等角对等边即可得AB=AC;
(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【题目详解】(1)证明:∵点O在边BC上,OE⊥AB,OF⊥AC,点O到△ABC的两边AB,AC所在直线的距离相等,
∴OE=OF,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),
∴∠ABC=∠ACB,
∴AB=AC;
(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,
由题意知,OE=OF.∠BEO=∠CFO=90°,
∵在Rt△OEB和Rt△OFC中
∴Rt△OEB≌Rt△OFC(HL),
∴∠OBE=∠OCF,
又∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;
(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)
【题目点拨】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.22、(1)AB=AP
,AB⊥AP
;(2)证明见解析;(3)AP=BQ,AP⊥BQ,证明见解析.【分析】(1)根据等腰直角三角形的性质可得∠BAP=45°+45°=90°,根据垂直平分线的性质可得AB=AP;(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;(3)类比(2)的证明就可以得到,证明垂直时,延长QB交AP于点N,则∠PBN=∠CBQ,借助全等得到的角相等,得出∠APC+∠PBN=90°,进一步可得出结论..【题目详解】解:(1)∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,∠ACB=90°,
∴∠BAC=∠ABC=(180°-∠ACB)=45°,
∵,∠EFP=180°-∠ACB=90°,∴△EFP为等腰直角三角形,BC=AC=CP,∴∠PEF=45°,AB=AP,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
故答案为:AB=AP
,AB⊥AP
;
(2)证明:
∵EF=FP,EF⊥FP
∴∠EPF=45°.
∵AC⊥BC,
∴∠CQP=∠EPF=45°
∴CQ=CP
在
Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP
(SAS).
∴AP=BQ.
(3)AP=BQ,AP⊥BQ,理由如下:
∵EF=FP,EF⊥FP,
∴∠EPF=45°.
∴∠CPQ=∠EPF=45°
∵AC⊥BC
∴CQ=CP
在
Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP
(SAS).
∴AP=BQ,∠BQC=∠APC,如图,延长QB交AP于点N,
则∠PBN=∠CBQ,在Rt△BCQ中,∠BQC+∠CBQ=90°,
∴∠APC+∠PBN=90°,
∴∠PNB=90°,
∴QB⊥AP.【题目点拨】本题是几何变换综合题,主要考查了等腰直角三角形的性质,垂直平分线的性质,全等三角形的判定和性质.能结合题意找到全等的三角形,并正确证明是解题关键.23、(1)小强的速度为1米/分,小明的速度为2米/分;(2)①小强跑的时间为3分;②.【分析】(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y米/分,由m=3,n=6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【题目详解】(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据题意得:=.解得:x=1.经检验,x=1是原方程的根,且符合题意.∴x+220=2.答:小强的速度为1米/分,小明的速度为2米/分.(2)①设小明的速度为y米/分,∵m=3,n=6,∴,解之得.经检验,是原方程的解,且符合题意,∴小强跑的时间为:(分)②小强跑的时间:分钟,小明跑的时间:分钟,小明的跑步速度为:分.故答案为:.【题目点拨】此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.24、详见解析【解题分析】由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【题目详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠1,∴∠EAF=∠1,∴AE∥CF,∴四边形AECF是平行四边形.【题目点拨】本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.25、(1)=10cm;(2)=10cm;(3)最小值是10cm.【分析】(1)根据对称的性质可得OP=O,∠PO=2∠AOB=60°,从而证出△PO是等边三角形,然后根据等边三角形的性质即可得出结论;(2)根据对称的性质可得OP=O,OP=O,∠PO=2∠AOP,∠PO=2∠BOP,然后证出△PO是等边三角形即可得出结论;(3)过点P分别作关于直线OA、直线OB的对称点、,连接O、O、,分别交OA、OB于点M、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级上册历史科目教学计划
- 幼儿读书节活动总结
- 公司保安个人工作计划
- 班长个人年终工作总结
- 书香班级文化建设方案
- 电子商务行业的数据分析与智能决策
- 室内装修拆除施工合同范本
- 白水泥材料在办公家具中的创新应用
- 无人机培训安全协议书范本
- 大型活动承办合同范本
- 2025年营口职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 药膳与食疗理论试题答案
- 2025年苏州经贸职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年湖南工程职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 李四光《看看我们的地球》原文阅读
- 读书分享-于永正-我怎样教语文
- 手术分级目录(2023年修订)
- 电力配网工程各种材料重量表总
- 2024年湖南高速铁路职业技术学院单招职业技能测试题库及答案解析
- ICU危急值管理的PDCA循环
- 火电厂2×660MW超超临界机组工程项目建设管理总体策划
评论
0/150
提交评论