北京市房山区燕山地区2024届数学八上期末复习检测模拟试题含解析_第1页
北京市房山区燕山地区2024届数学八上期末复习检测模拟试题含解析_第2页
北京市房山区燕山地区2024届数学八上期末复习检测模拟试题含解析_第3页
北京市房山区燕山地区2024届数学八上期末复习检测模拟试题含解析_第4页
北京市房山区燕山地区2024届数学八上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市房山区燕山地区2024届数学八上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学80809090则这四名同学四次数学测试成绩最稳定的是()A.甲 B.乙 C.丙 D.丁2.某文具超市有四种水笔销售,它们的单价分别是5元,4元,3元,1.2元.某天的水笔销售情况如图所示,那么这天该文具超市销售的水笔的单价的平均值是()A.4元 B.4.5元 C.3.2元 D.3元3.如图,B、E,C,F在同一条直线上,若AB=DE,∠B=∠DEF,添加下列一个条件后,能用“SAS”证明△ABC≌△DEF,则这条件是()A.∠A=∠D B.∠ABC=∠F C.BE=CF D.AC=DF4.已知,则下列变形正确的是()A. B. C. D.5.点在()A.第一象限 B.第二象限 C.第二象限 D.第四象限6.在下列各式中,计算正确的是()A. B. C. D.7.若分式的值为零,则的值为()A.2 B.3 C.﹣2 D.﹣38.如图,直线,直线,若,则()A. B. C. D.9.等腰三角形的一个外角为80°,则它的底角为()A.100° B.80° C.40° D.100°或40°10.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点的坐标可表示为(1,2,5),点的坐标可表示为(4,1,3),按此方法,则点的坐标可表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AB=AC,∠C=36°,AC的垂直平分线MN交BC于点D,则∠DAB=_____.12.如图在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是____点.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=_____°.14.一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于_____.15.如图,点B,A,D,E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF则需要添加一个适当的条件是______16.等腰三角形的两边长分别是3和7,则其周长为.17.观察下列各式:;;;;⋯⋯⋯,则______18.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是_____.三、解答题(共66分)19.(10分)问题背景:如图1,在四边形ABCD中,∠ABC=90°,AB=CB=DB,DB⊥AC.①直接写出∠ADC的大小;②求证:AB1+BC1=AC1.迁移应用:如图1,在四边形ABCD中,∠BAD=60°,AB=BC=CD=DA=1,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE、CF.①求证:△CEF是等边三角形;②若∠BAF=45°,求BF的长.20.(6分)如图,在四边形中,,,,分别以点为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,交于点.若点是的中点.(1)求证:;(2)求的长.21.(6分)如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.22.(8分)已知:如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.23.(8分)如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.24.(8分)如图,是等边三角形,延长到点,延长到点,使,连接,延长交于.(1)求证:;(2)求的度数.25.(10分)先化简,再求值,其中a=1.26.(10分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【题目详解】丁同学的平均成绩为:(80+80+90+90)=85;方差为S丁2[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【题目点拨】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.2、D【分析】首先设这天该文具超市销售的水笔共有支,然后根据题意列出关系式求解即可.【题目详解】设这天该文具超市销售的水笔共有支,则其单价的平均值是故选:D.【题目点拨】此题主要考查平均数的实际应用,熟练掌握,即可解题.3、C【分析】根据“SAS”证明两个三角形全等,已知AB=DE,∠B=∠DEF,只需要BC=EF,即BE=CF,即可求解.【题目详解】用“SAS”证明△ABC≌△DEF∵AB=DE,∠B=∠DEF∴BC=EF∴BE=CF故选:C【题目点拨】本题考查了用“SAS”证明三角形全等.4、D【分析】根据不等式的基本性质,逐一判断选项,即可.【题目详解】∵,∴,∴A错误;∵,∴,∴B错误;∵,∴,∴C错误;∵,∴,∴D正确,故选D.【题目点拨】本题主要考查不等式的基本性质,特别要注意,不等式两边同乘以一个负数,不等号要改变方向.5、A【解题分析】根据平面直角坐标系中,点所在象限和点的坐标的特点,即可得到答案.【题目详解】∵1>0,2>0,∴在第一象限,故选A.【题目点拨】本题主要考查点的横纵坐标的正负性和点所在的象限的关系,熟记点的横纵坐标的正负性和所在象限的关系,是解题的关键.6、C【分析】根据同底数幂的乘法和除法以及幂的乘方、积的乘方判断即可.【题目详解】A.,该选项错误;B.,该选项错误;C.,该选项正确;D.,该选项错误.故选:C.【题目点拨】此题考查同底数幂的乘法、除法以及幂的乘方、积的乘方,熟练掌握运算法则是解答本题的关键.7、A【解题分析】分析:要使分式的值为1,必须分式分子的值为1并且分母的值不为1.详解:要使分式的值为零,由分子2-x=1,解得:x=2.而x-3≠1;所以x=2.故选A.点睛:要注意分母的值一定不能为1,分母的值是1时分式没有意义.8、C【分析】根据垂直的定义和余角的定义列式计算得到,根据两直线平行,同位角相等可得.【题目详解】如图,直线,.,,直线,,故选C.【题目点拨】本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键.9、C【解题分析】试题分析:根据三角形的外角性质和等腰三角形的性质求解.解:∵等腰三角形的一个外角为80°∴相邻角为180°﹣80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:(180°﹣100°)÷2=40°.故选C.考点:等腰三角形的性质.10、C【分析】分别找到点C与过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号,然后从水平方向开始,顺时针方向即可写出C的坐标.【题目详解】过点C且平行(或重合)于原三角形三条边的直线与三边交点的序号分别是2,4,2∵水平方向开始,按顺时针方向∴点C的坐标为故选:C.【题目点拨】本题主要考查在新坐标系下确定点的坐标,读懂题意是解题的关键.二、填空题(每小题3分,共24分)11、72°【解题分析】根据等腰三角形的性质得到∠B=∠C=36°,由线段垂直平分线的性质得到CD=AD,得到∠CAD=∠C=36°,根据外角的性质得到∠ADB=∠C+∠CAD=72°,根据三角形的内角和即可得到结论.【题目详解】解:∵AB=AC,∠C=36°,∴∠B=∠C=36°,∵AC的垂直平分线MN交BC于点D,∴CD=AD,∴∠CAD=∠C=36°,∴∠ADB=∠C+∠CAD=72°,∴∠DAB=180°﹣∠ADB﹣∠B=72°,故答案为72°【题目点拨】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握等腰三角形的性质是解题的关键.12、B点【解题分析】以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.【题目详解】解:当以点B为原点时,如图,

A(-1,-1),C(1,-1),

则点A和点C关于y轴对称,符合条件.

故答案为:B点.【题目点拨】本题考查关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.13、1.【题目详解】试题分析:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=1°.考点:线段垂直平分线的性质;等腰三角形的性质.14、75【解题分析】根据两直线平行,内错角相等求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解:如图,∠1=30°,所以,∠=∠1+45°=30°+45°=75°.故答案为75°.“点睛”本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.15、答案不唯一,如:BC=EF或∠BAC=∠EDF.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【题目详解】若添加BC=EF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为答案不唯一,如:BC=EF或∠BAC=∠EDF.【题目点拨】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解答本题的关键.16、1【解题分析】试题分析:因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为1;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去.∴等腰三角形的周长为1.17、【分析】根据题意,总结式子的变化规律,然后得到,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案.【题目详解】解:∵;;;;……∴;∴;故答案为:.【题目点拨】本题考查了整式的混合运算,以及数字的变化规律,解题的关键是熟练掌握正确掌握题意,找到题目的规律,从而运用拆项法进行解题.18、2【解题分析】∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,又BE=2,∴EC=1.又∵DE平分∠ADC,∴∠ADE=∠EDC.∵AD∥BC,∴∠ADE=∠DEC.∴∠DEC=∠EDC.∴CD=EC=1.∴□ABCD的周长是2×(6+1)=2.三、解答题(共66分)19、问题背景①∠ADC=135°;②证明见解析;迁移应用:①证明见解析;②BF=.【分析】问题背景①利用等腰三角形的性质以及三角形的内角和定理即可解决问题.②利用面积法解决问题即可.迁移应用①如图1中,连BD,BE,DE.证明EF=FC,∠CEF=60即可解决问题.②过B作BH⊥AE于H,设BH=AH=EH=x,利用面积法求解即可.【题目详解】问题背景①∵BC=BD=BA,BD⊥AC,∴∠CBD=∠ABD∠ABC=45°,∴∠BCD=∠BDC(180°﹣45°)=67.5°,∠BDA=∠BAD=67.5°,∴∠ADC=∠BDC+∠BDA=135°.②如图1中,设AB=BC=a,∴S△ABC∵BE⊥AC,∠BCA=∠BAC=45°,∴BE=AE=CE∵S△ABC,∴a1AC11a1=AC1,∴AB1+BC1=AC1迁移应用:①证明:如图1中,连BD,BE,DE.∵AD=AB=BC=CD=1,∴△ABD≌△BCD(SSS),∴∠BAD=∠BCD∵∠BAD=60°,∴△ABD和△CBD为等边三角形∵C沿BM对称得E点,∴BM垂直平分CE,∴设∠CBF=∠EBF=α,EF=CF,∴∠BEC=90°﹣α,∴∠ABE=110°﹣1α,∴∠BAE=∠BEA=30°+α,∴∠AEC=110°,∴∠CEF=60°,∴△CEF为等边三角形②解:易知∠BFH=30°当∠BAF=45°时,△ABE为等腰直角三角形过B作BH⊥AE于H,∴设BH=AH=EH=x,∴S△ABE⋅1x⋅x=x1S△ABE⋅1x⋅x=1,∴x1=1,即x∵BF=1BH,∴BF=1.【题目点拨】本题属于四边形综合题,考查了解直角三角形等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会利用面积法解决问题,属于中考常考题型.20、(1)详见解析;(2)【分析】(1)连接AE,CE,由题意得AE=CE,根据等腰三角形中线的性质得证AE=CE.(2)连接CF,通过证明△AOF≌△COB(ASA),求得CF、DF的长,利用勾股定理求得CD的长.【题目详解】(1)连接AE,CE,由题意可知,AE=CE又∵O是AC的中点,∴EO⊥AC即BE⊥AC(2)连接CF,由(1)知,BE垂直平分AC,∴AF=CF∵AD∥BC,∴∠DAC=∠BCA在△AOF和△COB中∴△AOF≌△COB(ASA)∴AF=BC=2,∴CF=AF=2,∵AD=3,∴DF=3-2=1∵∠D=90°,∴在Rt△CFD中,答:CD的长为【题目点拨】本题考查了三角形的综合问题,掌握等腰三角形中线的性质、全等三角形的判定定理以及勾股定理是解题的关键.21、80°.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△DAF得出∠ADF=∠CBG,继而由三角形外角性质可得答案.【题目详解】∵四边形ABCD是平行四边形,∠C=50,∴∠A=∠C=50,∠ABC=180﹣∠C=130,AD=BC.∵∠E=30,∴∠ABE=180﹣∠A﹣∠E=100,∴∠CBG=30,在△BCG和△DAF中,∵,∴△BCG≌△DAF(SAS),∴∠CBG=∠ADF=30,则∠BFD=∠A+∠ADF=80.【题目点拨】此题主要考查平行四边形的性质与证明,解题的关键是熟知平行四边形的性质及全等三角形的判定与性质.22、证明见解析.【分析】根据两直线平行,内错角相等可得∠A=∠ECD,然后利用“角角边”证明△ABC和△ECD全等,再根据全等三角形对应边相等即可得证.【题目详解】∵AB∥CD,∴∠A=∠ECD.在△ABC和△ECD中,∵∠A=∠ECD,∠ACB=∠D,AB=CE,∴△ABC≌△ECD(AAS).∴BC=DE.考点:1.平行线的性质;2.全等三角形的判定和性质.23、(1)见解析;(2)(ⅰ)BF=(2+)CF;理由见解析;(ⅱ)BP=.【分析】(1)先求出∠BAE+∠ABC=180°,再根据同旁内角互补两直线平行,即可证明AE∥BC.(2)(ⅰ)过点A作AH⊥BC于H,如图1所示,先证明△ABH、△BAF是等腰直角三角形,再根据等腰直角三角形的性质,求证BF=(2+)CF即可.(ⅱ)①当点F在点C的左侧时,作PG⊥AB于G,如图2所示,先通过三角形面积公式求出AF的长,再根据勾股定理求得BF、AC、BD的长,证明Rt△BPG≌Rt△BPF(HL),以此得到AD的长,设AP=x,则PG=PF=6﹣x,利用勾股定理求出AP的长,再利用勾股定理求出PD的长,通过BP=BD﹣PD即可求出线段BP的长.②当点F在点C的右侧时,则∠CAF=∠ACF',P’和F’分别对应图2中的P和F,如图3所示,根据等腰三角形的性质求得PD=P'D=,再根据①中的结论,可得BP=BP'+P'P=.【题目详解】(1)∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)①当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,则S△ABC=BC•AF=×10×AF=30,∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,∵S△ABC=AC•BD=×2×BD=30,∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD=,∴BP=BD﹣PD=;②当点F在点C的右侧时,P’和F’分别对应图2中的P和F,如图3所示,则∠CAF=∠CAF',∵BD⊥AC,∴∴∠APD=∠AP'D,∴△是等腰三角形∴AP=AP',PD=P'D=,∴BP=BP'+P'P=;综上所述,线段BP的长为或.【题目点拨】本题考查了三角形的综合问题,掌握同旁内角互补两直线平行、等腰直角三角形的性质以及判定、勾股定理、全等三角形的性质以及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论