2024届吉林省舒兰市第九大区八年级数学第一学期期末检测试题含解析_第1页
2024届吉林省舒兰市第九大区八年级数学第一学期期末检测试题含解析_第2页
2024届吉林省舒兰市第九大区八年级数学第一学期期末检测试题含解析_第3页
2024届吉林省舒兰市第九大区八年级数学第一学期期末检测试题含解析_第4页
2024届吉林省舒兰市第九大区八年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省舒兰市第九大区八年级数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.82.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线C.三角形的高 D.以上皆不对4.把分式方程化为整式方程正确的是()A. B.C. D.5.函数的自变量的取值范围是()A. B. C.且 D.6.等腰三角形的两边长分别是,.则它的周长是()A. B. C.或 D.7.估计4﹣的值为()A.0到1之间 B.1到2之间 C.2到3之间 D.3到4之间8.下列计算中正确的是().A. B. C. D.9.如图,和关于直线对称,下列结论中正确的有()①,②,③直线垂直平分,④直线和的交点不一定在直线上.A.个 B.个 C.个 D.个10.下面有4个汽车标志图案,其中是中心对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.已知,,则__________.12.一组数据1、6、4、6、3,它的平均数是_______,众数是_______,中位数是_______.13.若分式有意义,则的取值范围是__________.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为______________度.15.在如图所示的方格中,连接格点AB、AC,则∠1+∠2=_____度.16.画出一个正五边形的所有对角线,共有_____条.17.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN的周长最小时,∠AMN+∠ANM的度数是_____.18.一次函数y=kx+b与y=x+2两图象相交于点P(2,4),则关于x,y的二元一次方程组的解为____.三、解答题(共66分)19.(10分)解下列方程:;.20.(6分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?21.(6分)在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=40°,求∠AEB的度数;(1)求证:∠AEB=∠ACF;(3)求证:EF1+BF1=1AC1.22.(8分)两个工程队共同参与一项筑路工程,若先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?23.(8分)如图,把△ABC平移,使点A平移到点O.(1)作出△ABC平移后的△OB′C′;(2)求出只经过一次平移的距离.24.(8分)分式计算其中.25.(10分)如图,在平面直角坐标系中,一次函数与轴、轴分别交于点、两点,与正比例函数交于点.(1)求一次函数和正比例函数的表达式;(2)若点为直线上的一个动点(点不与点重合),点在一次函数的图象上,轴,当时,求点的坐标.26.(10分)如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.

参考答案一、选择题(每小题3分,共30分)1、A【题目详解】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值;解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选A.2、C【解题分析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4.故选C.考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.3、C【解题分析】试题解析:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选C.4、C【解题分析】方程两边同乘最简公分母x(x+1),得:2(x+1)-x2=x(x+1),故选C.5、C【分析】根据二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0,列出不等式即可得出结论.【题目详解】解:由题意可知:解得:且故选C.【题目点拨】此题考查的是求自变量的取值范围,掌握二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0是解决此题的关键.6、A【分析】题目给出等腰三角形有两条边长为和,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】当3cm是腰时,3+3<7,不能组成三角形,当7cm是腰时,7,7,3能够组成三角形.则三角形的周长为17cm.故选:A.【题目点拨】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7、A【分析】首先确定的取值范围,进而利用不等式的性质可得﹣的范围,再确定4﹣的值即可.【题目详解】解:∵<,∴3<<4,∴﹣4<﹣<﹣3,∴0<4﹣<1,故选:A.【题目点拨】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.8、D【分析】根据合并同类项,可判断A;根据同底数幂的除法,可判断B;根据同底数幂的乘法,可判断C;根据积的乘方,可判断D.【题目详解】A、不是同类项不能合并,故A错误;

B、同底数幂的除法底数不变指数相减,故B错误;

C、同底数幂的乘法底数不变指数相加,故C错误;

D、积的乘方等于乘方的积,故D正确;

故选:D.【题目点拨】此题考查积的乘方,合并同类项,同底数幂的除法,同底数幂的乘法,解题关键在于掌握积的乘方等于每一个因式分别乘方,再把所得的幂相乘.9、B【分析】根据轴对称的性质求解.【题目详解】解:①,正确;②,正确;③直线垂直平分,正确;④直线和的交点一定在直线上,故此说法错误正确的结论共3个,故选:B.【题目点拨】轴对称的性质:①成轴对称的两个图形是全等形;②对称轴是对应点连线的垂直平分线;③对应线段或者平行,或者重合,或者相交.如果相交,那么交点一定在对称轴上.10、D【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【题目详解】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.D选项是中心对称.故选:D.【题目点拨】本题考查中心对称的定义,属于基础题,注意掌握基本概念.二、填空题(每小题3分,共24分)11、【分析】利用平方差公式对变形为,即可求解.【题目详解】∵,,∴.故答案为:.【题目点拨】本题主要考查了平方差公式的应用,解题的关键是牢记公式的结构特征和形式.12、161【分析】根据平均数的计算公式、众数和中位数的定义即可得.【题目详解】平均数为,因为这组数据中,6出现的次数最多,所以它的众数是6,将这组数据按从小到大进行排序为,则它的中位数是1,故答案为:1,6,1.【题目点拨】本题考查了平均数、众数、中位数,熟记公式和定义是解题关键.13、x≠1【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【题目详解】∵分式有意义,∴x-1≠0,解得x≠1.故答案为:x≠1.【题目点拨】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14、【分析】根据等腰三角形的性质得出∠B=∠C,根据“特征值”的定义得到∠A=2∠B,根据三角形内角和定理和已知得出4∠B=180°,求解即可得出结论.【题目详解】∵△ABC中,AB=AC,∴∠B=∠C.∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=2,∴∠A:∠B=2,即∠A=2∠B.∵∠A+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠A=2∠B=1°.故答案为1.【题目点拨】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出4∠B=180°是解答此题的关键.15、1【分析】根据勾股定理分别求出AD2、DE2、AE2,根据勾股定理的逆定理得到△ADE为等腰直角三角形,得到∠DAE=1°,结合图形计算,得到答案.【题目详解】解:如图,AD与AB关于AG对称,AE与AC关于AF对称,连接DE,由勾股定理得,AD2=22+12=5,DE2=22+12=5,AE2=32+12=10,则AD2+DE2=AE2,∴△ADE为等腰直角三角形,∴∠DAE=1°,∴∠GAD+∠EAF=90°﹣1°=1°,∴∠1+∠2=1°;故答案为:1.【题目点拨】本题考查的是勾股定理、勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16、1【分析】画出图形即可求解.【题目详解】解:如图所示:五边形的对角线共有=1(条).故答案为:1.【题目点拨】本题考查多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.17、160°.【解题分析】分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠AA″A′=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.详解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=80°.由轴对称图形的性质可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°.故答案为:160°.点睛:本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.18、.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【题目详解】∵一次函数y=kx+b与y=x+2两图象相交于点P(2,4),∴关于x,y的二元一次方程组的解为.故答案为:.【题目点拨】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题(共66分)19、(1)原方程无解;(2).【分析】(1)方程两边都乘以x(x+1)得出,求出方程的解,最后进行检验即可;(2)方程两边都乘以(x+2)(x-2)得出,求出方程的解,最后进行检验即可.【题目详解】解:

,去分母得:,解得:,经检验是增根,原方程无解;去分母得:,整理得;,解得:,经检验是分式方程的解.【题目点拨】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20、(1)黄瓜和茄子各30千克、10千克;(2)23元【分析】(1)设当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【题目详解】(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得,答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.【题目点拨】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.21、(1)∠AEB=15°;(1)证明见解析;(3)证明见解析.【解题分析】(1)根据等腰三角形的性质可得∠ABE=∠AEB,求出∠BAE,根据三角形内角和定理求出即可;(1)根据等腰三角形的性质得出∠BAF=∠CAF,由SAS得出△BAF≌△CAF,从而得出∠ABF=∠ACF,即可得出答案;(3)根据全等得出BF=CF,由已知得到∠CFG=∠EAG=90°,由勾股定理得出EF1+BF1=EF1+CF1=EC1,EC1=AC1+AE1=1AC1,即可得到答案.【题目详解】解:(1)∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAC=40°,∠EAC=90°,∴∠BAE=40°+90°=130°,∴∠AEB=(180°﹣130°)÷1=15°;(1)∵AB=AC,D是BC的中点,∴∠BAF=∠CAF.在△BAF和△CAF中,∴△BAF≌△CAF(SAS),∴∠ABF=∠ACF,∵∠ABE=∠AEB,∴∠AEB=∠ACF;(3)∵△BAF≌△CAF,∴BF=CF,∵∠AEB=∠ACF,∠AGE=∠FGC,∴∠CFG=∠EAG=90°,∴EF1+BF1=EF1+CF1=EC1,∵△ACE是等腰直角三角形,∴∠CAE=90°,AC=AE,∴EC1=AC1+AE1=1AC1,即EF1+BF1=1AC1.【题目点拨】本题主要考查全等三角形的判定与性质、勾股定理、等腰三角形的性质等,能正确和熟练地应用这些知识解决问题是关键.22、(1)90天;(2)甲队每天施工费为15万元,乙队每天施工费为8万元;(3)乙队最少施工30天【分析】(1)乙队单独完成这项工程需x天,设根据“先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成”列出方程,解之即可;(2)设甲队每天施工费为m万元,乙队每天施工费为n万元,根据两种情况下的总施工费分别为810万元和828万元列出方程组,解之即可;(3)求出甲队单独施工需要的天数,设乙队施工a天,甲队施工b天,则有,再根据工程预算的总费用不超过万元列出不等式,代入求解即可得到a的最小值,即最少施工的天数.【题目详解】解:(1)设乙队单独完成这项工程需x天,由题意可得:,解得:x=90,经检验:x=90是原方程的解,∴乙队单独完成这项工程需90天;(2)设甲队每天施工费为m万元,乙队每天施工费为n万元,由题意得:,解得:,∴甲队每天施工费为15万元,乙队每天施工费为8万元;(3)∵乙队单独完成工程需90天,甲、乙合作完成此工程共需36天,∴甲队单独完成这项工程的天数为:,设乙队施工a天,甲队施工b天,由题意得:,由①得:,把代入②可解得:a≥50,∴乙队最少施工30天.【题目点拨】此题主要考查了分式方程的应用,以及不等式的应用,列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系是解决问题的关键,此题工作量问题,用到的公式是:工作效率=工作总量÷工作时间.23、(1)如图见解析;(2)只经过一次平移的距离为.【分析】(1)根据平移的性质画出平移后的△OB'C'即可;

(2)利用平移的性质画图,即对应点都移动相同的距离.【题目详解】(1)如图(2)只经过一次平移的距离即OA的长度;∵点A(2,3),∴OA=.∴只经过一次平移的距离为.【题目点拨】此题主要考查了作图--平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24、;.【分析】根据分式的运算法则即可化简,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论