




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹿邑县2024届八上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.命题:①对顶角相等;②平面内垂直于同一条直线的两直线平行;③同位角相等④相等的角是对顶角;其中假命题有()A.1个 B.2个 C.3个 D.4个2.若三角形两边长分别是4、5,则周长c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定3.下列多项式①x²+xy-y²②-x²+2xy-y²③xy+x²+y²④1-x+x其中能用完全平方公式分解因式的是(
)A.①② B.①③ C.①④ D.②④4.等腰三角形的周长为,其中一边长为,则该等腰三角形的腰长为()A. B.或 C. D.5.如图,已知∠1=∠2,则下列条件中不一定能使△ABC≌△ABD的是()A.AC=AD B.BC=BD C.∠C=∠D D.∠3=∠46.下列运算正确的是()A. B. C. D.7.下列因式分解正确的是()A. B.C. D.8.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE9.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则 B.运用平方差公式C.运用单项式乘多项式法则 D.运用完全平方公式10.若使某个分式无意义,则这个分式可以是()A. B. C. D.11.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.1912.如图,在中,,分别以顶点,为圆心,大于长为半径作弧,两弧交于点,,作直线交于点.若,,则长是()A.7 B.8 C.12 D.13二、填空题(每题4分,共24分)13.已知一个多边形的内角和是1620°,则这个多边形是_____边形.14.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.15.如图,在中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.16.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为_____.17.将点M(﹣5,m)向上平移6个单位得到的点与点M关于x轴对称,则m的值为_____.18.已知空气的密度是0.001239,用科学记数法表示为________三、解答题(共78分)19.(8分)如图,在中,是边上的中线,是边上的中点,过点作交的延长线于点.(1)求证:.(2)当,时,求的面积.20.(8分)四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”.“筝形”是一种特殊的四边形,它除了具有两组邻边分别相等的性质外,猜想它还有哪些性质?然后证明你的猜想.(以所给图形为例,至少写出三种猜想结果,用文字和字母表示均可,并选择猜想中的其中一个结论进行证明)21.(8分)小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数.22.(10分)先化简,再求值:(2x+1)2﹣(x+2y)(x﹣2y)-(2y)2,其中x=﹣1.23.(10分)如图,已知AB⊥BC,EC⊥BC,ED⊥AC且交AC于F,BC=CE,则AC与ED相等吗?说明你的理由.24.(10分)在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为米,与公路上另一停靠站的距离为米,且,如图,为了安全起见,爆破点周围半径米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.25.(12分)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).26.如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=,BD=1.(1)求证:ΔBCD是直角三角形;(1)求△ABC的面积。
参考答案一、选择题(每题4分,共48分)1、B【分析】利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.【题目详解】①对顶角相等,正确,是真命题;②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;③同位角相等,错误,是假命题;④相等的角是对顶角,错误,是假命题,故选:B.【题目点拨】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质等基础知识,难度较小.2、C【解题分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,∴5-4<第三边<5+4,∴10<c<18.故选C.3、D【解题分析】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.故选D.4、C【分析】此题分为两种情况:4cm是等腰三角形的底边或4cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【题目详解】解:若4cm为等腰三角形的腰长,则底边长为18-4-4=10(cm),4+4=8<10,不符合三角形的三边关系;
若4cm为等腰三角形的底边,则腰长为(18-4)÷2=7(cm),此时三角形的三边长分别为7cm,7cm,4cm,符合三角形的三边关系;
∴该等腰三角形的腰长为7cm,
故选:C.【题目点拨】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.5、B【解题分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【题目详解】A、∵∠1=∠2,AB为公共边,若AC=AD,则△ABC≌△ABD(SAS),故本选项错误;B、∵∠1=∠2,AB为公共边,若BC=BD,则不一定能使△ABC≌△ABD,故本选项正确;C、∵∠1=∠2,AB为公共边,若∠C=∠D,则△ABC≌△ABD(AAS),故本选项错误;D、∵∠1=∠2,AB为公共边,若∠3=∠4,则△ABC≌△ABD(ASA),故本选项错误;故选B.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、C【分析】分别根据积的乘方运算法则、同底数幂的除法法则和完全平方公式计算各项,进而可得答案.【题目详解】解:A、,故本选项运算错误,不符合题意;B、,故本选项运算错误,不符合题意;C、,故本选项运算正确,符合题意;D、,故本选项运算错误,不符合题意;故选:C.【题目点拨】本题考查了幂的运算性质和完全平方公式,属于基础题目,熟练掌握基本知识是解题的关键.7、D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【题目详解】A没有把化为因式积的形式,所以A错误,B从左往右的变形不是恒等变形,因式分解是恒等变形,所以B错误,C变形也不是恒等变形所以错误,D化为几个因式的积的形式,是因式分解,所以D正确.故选D.【题目点拨】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.8、C【解题分析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.9、B【解题分析】直接利用平方差公式计算得出答案.【题目详解】选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.故选:B.【题目点拨】此题主要考查了多项式乘法,正确应用公式是解题关键.10、B【分析】根据分式无意义的条件,对每个式子进行判断,即可得到答案.【题目详解】解:A、由,得,故A不符合题意;B、由,得,故B符合题意;C、由,得,故C不符合题意;D、由,得,故D不符合题意;故选:B.【题目点拨】本题考查了分式无意义的条件,解题的关键是掌握分式无意义的条件,即分母等于0.11、C【解题分析】因为等腰三角形的两边分别为6和13,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【题目详解】解:当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;当6为腰时,其它两边为6和13,6、6、13不可以构成三角形.故选C.【题目点拨】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.12、B【分析】根据垂直平分线的判定和性质,得到AD=BD,即可得到BC的长度.【题目详解】解:根据题意可知,直线MN是AB的垂直平分线,∴BD=AD=5,∴BC=BD+CD=5+3=8;故选:B.【题目点拨】本题考查了线段垂直平分线的判定和性质,解题的关键是熟练掌握垂直平分线的性质定理进行解题.二、填空题(每题4分,共24分)13、十一【题目详解】设所求多边形的边数是n,则(n-2)•180°=1620°,解得n=1.故答案为:十一14、1.【解题分析】试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.考点:关于y轴对称15、m+3n=1【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【题目详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∴∠PBC+∠PCB+∠ABP=1°-m°,∴3∠ABP=1°-m°,∴3n°+m°=1°,故答案为:m+3n=1.【题目点拨】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.16、1【分析】求出∠BAD=∠BAC﹣∠DAC=10°,求出AB=2,求出BC=4,则CD可求出.【题目详解】∵AD⊥BC于点D,∠C=10°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=10°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=10°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=1.故答案为:1.【题目点拨】此题主要考查直角三角形的性质与证明,解题的关键是熟知含10°的直角三角形的性质.17、-1.【分析】直接利用平移的性质得出平移后点的坐标,再利用关于x轴对称点的性质得出答案.【题目详解】解:∵点M(﹣5,m)向上平移6个单位长度,∴平移后的点的坐标为:(﹣5,m+6),∵点M(﹣5,m)向上平移6个单位长度后所得到的点与点M关于x轴对称,∴m+m+6=0,解得:m=﹣1.故答案为:﹣1.【题目点拨】本题考查了平移的问题,掌握平移的性质以及关于x轴对称点的性质是解题的关键.18、1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.001239=1.239×10-3故答案为:1.239×10-3.【题目点拨】本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.三、解答题(共78分)19、(1)答案见解析;(2)8【解题分析】(1)由题意根据全等三角形的判定定理运用ASA,即可证得;(2)根据题意利用全等三角形的性质结合三角形等底等高面积相等,进行分析即可求解.【题目详解】解:(1)∵是边上的中线,∴,∵,∴(内错角),∵,,(对顶角),∴(ASA).(2)∵,AD=AD,是边上的中线,∴,∵是边上的中点,∴(等底等高),∵,∴.∴的面积为:8.【题目点拨】本题考查全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.20、①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;详见解析【分析】根据题意,即可写出该图形的性质,然后选择一个进行证明即可.【题目详解】解:如图:①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;理由:①AD=CD,AB=CB,BD=BD,∴△ABD≌△CBD;∴△ABD与△CBD关于直线BD对称;②由①△ABD≌△CBD,∴∠DAB=∠DCB;③∵AD=CD,AB=CB,∴点B、点D在线段AC的垂直平分线上,∴AC⊥BD;④由③可知,点B、点D在线段AC的垂直平分线上,∴BD平分AC;⑤由①知△ABD≌△CBD,∠ADB=∠CDB,∠ABD=∠CBD,∴BD平分∠ADC和∠ABC;【题目点拨】本题考查了“筝形”的性质,全等三角形的判定和性质,垂直平分线的性质,在轴对称的性质,解题的关键是熟练掌握所学的性质,正确找出“筝形”的性质.21、45【分析】设小明每小时加工零件x个,则小华每小时加工(x-15)个,
根据时间关系,得
【题目详解】解:设小明每小时加工零件x个,则小华每小时加工(x-15)个
由题意,得
解得:x=45
经检验:x=45是原方程的解,且符合题意.
答:小明每小时加工零件45个.【题目点拨】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.22、3x2+4x+1,2【分析】根据完全平方公式、平方差公式和积的乘方可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【题目详解】解:(2x+1)2﹣(x+2y)(x﹣2y)﹣(2y)2=4x2+4x+1﹣x2+4y2﹣4y2=3x2+4x+1,当x=﹣1时,原式=3×(﹣1)2+4×(﹣1)+1=2.【题目点拨】本题考查了整式的化简求值问题,熟练掌握整式化简求值的步骤是解题的关键.23、AC=ED,理由见解析【分析】证得∠ACB=∠DEC,可证明△DEC≌△ACB,则AC=ED可证出.【题目详解】解:AC=ED,理由如下:∵AB⊥BC,EC⊥BC,DE⊥AC,∴∠ACB+∠FCE=90°,∠FCE+∠DEC=90°,∴∠ACB=∠DEC,∵BC=CE,∠ABC=∠DCE=90°∴△DEC≌△ACB(ASA),∴AC=ED.【题目点拨】本题主要考查了全等三角形的判定及性质,分析并证明全等所缺条件是解题关键.24、没有危险,因此AB段公路不需要暂时封锁.【分析】本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【题目详解】解:如图,过C作CD⊥AB于D,∵BC=800米,AC=600米,∠ACB=90°,∴米
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国硬质合金燕尾槽铣刀行业投资前景及策略咨询研究报告
- 甘肃省武威市2024届中考猜题数学试卷含解析
- 广东省广州市天河区暨南大附中2024届中考五模数学试题含解析
- 2025年厂级员工安全培训考试试题【必考】
- 2024-2025厂里厂里安全培训考试试题(B卷)
- 2025公司员工安全培训考试试题带解析答案
- 2025年部门级安全培训考试试题参考
- 2024-2025全员安全培训考试试题高清
- 2025新员工入职安全培训考试试题带答案(A卷)
- 2025年新入职工职前安全培训考试试题(打印)
- 超尔星雅学习形势与政策(2025春)课程作业参考答案
- 多智能体协同控制-第1篇-深度研究
- 携手赋能少年志 双向奔赴赢未来 2025年五年级下学期家长会 课件
- 2025年港口国企笔试题库及答案
- 如何筛选简历课件
- Unit5 Humans and nature Lesson 3 Race to the pole 教学设计 -2024-2025学年高中英语北师大版(2019)必修第二册
- 把握DeepSeek时刻携手同行 华为昇腾AI解决方案汇报
- 声乐理论基础知识
- GB 45184-2024眼视光产品元件安全技术规范
- 政务大厅窗口工作人员政务服务培训心得体会
- 安全生产法律法规汇编(2025版)
评论
0/150
提交评论