版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市巴南区七校共同体2024届八年级数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把(a2+1)2-4a2分解因式得()A.(a2+1-4a)2 B.(a2+1+2a)(a2+1-2a)C.(a+1)2(a-1)2 D.(a2-1)22.在同一坐标系中,函数与的图象大致是()A. B.C. D.3.已知点都在直线上,则的大小关系()A. B. C. D.4.如图,在中,AD是角平分线,于点E,的面积为28,,,则AC的长是A.8 B.6 C.5 D.45.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6 B.5 C.4 D.36.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°7.的立方根为()A. B. C. D.8.下列命题是假命题的是A.同旁内角互补,两直线平行B.若两个数的绝对值相等,则这两个数也相等C.平行于同一条直线的两条直线也互相平行D.全等三角形的周长相等9.下列计算正确的是()A. B. C. D.10.一个三角形的两边长分别是和,则第三边的长可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,则∠BPE=_______________.12.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.13.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.14.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E等于_____度.15.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.17.如图,在中,,,,以点为圆心,长为半径作弧,交于点,再分别以点和点为圆心,大于的长为半径作弧,两弧相交于点,作射线交于点,则的长为______.18.若不等式组的解集是,则的取值范围是________.三、解答题(共66分)19.(10分)分解因式:(1)(2)(3)20.(6分)如图,观察每个正多边形中的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形的边数3456…15的度数…(2)根据规律,是否存在一个正边形,使其中?若存在,直接写出的值;若不存在,请说明理由;(3)根据规律,是否存在一个正边形,使其中?若存在,直接写出的值;若不存在,请说明理由.21.(6分)一列快车从甲地始往乙地,一列慢车从乙地始往甲地,慢车的速度是快车速度的,两车同时出发.设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象解决以下问题:(1)甲、乙两地之间的距离为_______;点的坐标为__________;(2)求线段的函数关系式,并写出自变量的取值范围;(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?22.(8分)如图①,一个长为,宽为的长方形,沿途中的虚线用剪刀均匀的分成四个小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方法求图②中阴影部分的面积.方法1:________________________________________(只列式,不化简)方法2:________________________________________(只列式,不化简)(2)请写出三个式子之间的等量关系:_______________________________.(3)根据(2)题中的等量关系,解决如下问题:若,求的值.23.(8分)(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.24.(8分)在△ABC中,∠CAB=45°,BD⊥AC于点D,AE⊥BC于点E,DF⊥AB于点F,AE与DF交于点G,连接BG.(1)求证:AG=BG;(2)已知AG=5,BE=4,求AE的长.25.(10分)已知:点D是等边△ABC边上任意一点,∠ABD=∠ACE,BD=CE.(1)说明△ABD≌△ACE的理由;(2)△ADE是什么三角形?为什么?26.(10分)如图,在四边形ABCD中,∠B=90°,AB∥ED,交BC于E,交AC于F,DE=BC,.(1)求证:△FCD是等腰三角形(2)若AB=3.5cm,求CD的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先利用平方差公式,再利用完全平方公式,进行因式分解,即可.【题目详解】原式=(a1+1+1a)(a1+1-1a)=(a+1)1(a-1)1.故选:C.【题目点拨】本题主要考查分解因式,掌握平方差公式,完全平方公式,是解题的关键.2、B【分析】根据解析式知:第二个函数比例系数为正数,故图象必过一、三象限,而必过一、三或二、四象限,可排除C、D选项,再利用k进行分析判断.【题目详解】A选项:,.解集没有公共部分,所以不可能,故A错误;B选项:,.解集有公共部分,所以有可能,故B正确;C选项:一次函数的图象不对,所以不可能,故C错误;D选项:正比例函数的图象不对,所以不可能,故D错误.故选:B.【题目点拨】本题考查正比例函数、一次函数的图象性质,比较基础.3、A【分析】先根据直线y=−1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【题目详解】∵直线y=−1x+b,k=−1<0,∴y随x的增大而减小,又∵−2<−1<1,∴y1>y2>y1.故选:A.【题目点拨】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.4、B【解题分析】过点D作于F,根据角平分线的性质可得DF=DE,然后利用的面积公式列式计算即可得解.【题目详解】过点D作于F,是的角平分线,,,,解得,故选B.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.5、D【分析】过点作于,然后利用的面积公式列式计算即可得解.【题目详解】解:过点作于,是的角平分线,,,,解得.故选:.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.6、C【解题分析】根据角平分线的定义和三角形的外角的性质即可得到∠D=∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=∠ACE,∠2=∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=∠A=25°.故选C.7、A【分析】根据立方根的定义与性质即可得出结果【题目详解】解:∵∴的立方根是故选A【题目点拨】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.8、B【解题分析】根据平行线的判定,绝对值和全等三角形的性质判断即可.【题目详解】A.同旁内角互补,两直线平行,是真命题;B.若两个数的绝对值相等,则这两个数相等或互为相反数,是假命题;C.平行于同一条直线的两条直线也互相平行,是真命题;D.全等三角形的周长相等,是真命题.故选B.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9、C【解题分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【题目详解】解:A、原式=2,所以A选项错误;B、原式=2-,所以B选项错误;C、原式==,所以C选项正确;D、原式=3,所以D选项错误.故选C.【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10、C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【题目详解】设第三边为x,由三角形三条边的关系得1-2<x<1+2,∴2<x<6,∴第三边的长可能是1.故选C.【题目点拨】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.二、填空题(每小题3分,共24分)11、60°【分析】由等边三角形的性质得出AB=CA,∠BAD=∠ACE=60°,由SAS即可证明△ABD≌△CAE,得到∠ABD=∠CAE,利用外角∠BPE=∠BAP+∠ABD,即可解答.【题目详解】解:∵△ABC是等边三角形,∴AB=CA,∠BAD=∠ACE=60°,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∵∠BPE=∠BAP+∠ABD,∴∠BPE=∠BAP+∠CAE=∠BAC=60°.故答案为:60°.【题目点拨】本题考查了等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.12、1.【解题分析】∵∠ACB=90°,∴∠ECF+∠BCD=90°.∵CD⊥AB,∴∠BCD+∠B=90°.∴∠ECF=∠B,在△ABC和△FEC中,∵∠ECF=∠B,EC=BC,∠ACB=∠FEC=90°,∴△ABC≌△FEC(ASA).∴AC=EF.∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=1cm.13、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【题目详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【题目点拨】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.14、1【分析】由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=38°,可得∠E度数.【题目详解】解:如图,记矩形的对角线的交点为,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,∠E=∠DAE,∠ADB=∠CAD=38°,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=1°.故答案为:1.【题目点拨】本题主要考查矩形性质,等腰三角形的性质,平行线的性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.15、x=1【解题分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【题目详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),∴关于x的方程ax+b=0的解是x=1,故答案为x=1.【题目点拨】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.16、1.5【解题分析】在Rt△ABC中,,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.17、4.1【分析】根据勾股定理计算出AB的长,再由作图可知CE垂直平分BD,然后利用等面积法计算CF即可.【题目详解】连接CD、DE、BE,由题可知,BC=DC,DE=BE,∴CE垂直平分BD,∵在Rt△ABC中,AC=1,BC=6,∴AB=,∵S△ABC=AC•BC=AB•CF,∴×1×6=×10•CF,∴CF=4.1.故答案为:4.1.【题目点拨】本题考查垂直平分线的判定,勾股定理,明确垂直平分线判定定理及勾股定理,掌握等面积法是解题关键.18、【分析】先解第一个不等式得到,由于不等式组的解集为,根据同小取小得到.【题目详解】解:解①得,
∵不等式组的解集为,
∴.
故答案为:【题目点拨】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.三、解答题(共66分)19、(1);(2);(3)【分析】(1)先提取公因式-2,再利用完全平方公式分解即可得答案;(2)先提取公因式(x-1),再利用平方差公式分解即可得答案;(3)先利用平方差公式分解,再利用完全平方公式分解即可得答案.【题目详解】(1)原式=(2)原式=(3)原式=【题目点拨】本题考查利用提取公因式及公式法因式分解,分解因式一般步骤:一提(提公因式),二套(套用平方差公式或完全平方公式),三分(分组分解法或十字相乘法),四查(检查分解是否彻底).熟练掌握完全平方公式及平方差公式是解题关键.20、(1)60°,45°,36°,30°,12°;(2)存在,n=18;(3)不存在,理由见解析.【分析】(1)根据多边形内角和公式求出每个内角的度数,再根据三角形内角和及等腰三角形的性质求解即可;(2)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可;(3)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可.【题目详解】解:(1)根据正多边形的内角和公式可知,正n边形的内角和=(n-2)×180°,故n边形一个内角度数=,当正多边形有3条边时,一个内角度数==60°,则∠α==60°;当正多边形有4条边时,一个内角度数==90°,则∠α==45°;当正多边形有5条边时,一个内角度数==108°,则∠α==36°;当正多边形有6条边时,一个内角度数==120°,则∠α==30°;...当正多边形有15条边时,内角度数==156°,则∠α==12°.故答案为:60°,45°,36°,30°,12°;(2)存在.由(1)可知,,设存在正多边形使得,则,,∴存在一个正多边形使;(3)不存在,理由如下:设存在多边形使得,则,(不是整数),∴不存在一个多边形使.【题目点拨】本题考查了多边形的内角和,等腰三角形的性质,能求出多边形的一个内角的度数是解此题的关键,注意:多边形的内角和=(n-2)×180°.21、(1)(15,1200)(2).(3)3.7h【分析】(1)根据已知条件和函数图像可以直接写出甲、乙两地之间的距离;(2)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围.(3)求出第一辆慢车和第二辆快车相遇时的距离,又已知快车的速度,即可用求出时间的差值.【题目详解】(1)由图像可知,甲、乙两地之间的距离为1200km;点B为两车出发5小时相遇;∵慢车的速度和快车速度的和为:1200÷5=240km/h又∵慢车的速度是快车速度的,∴慢车的速度为:80km/h,快车的速度为:160km/h,∴慢车总共行驶:1200÷80=15h∴D(15,1200)(2)由题可知,点C是快车刚到达乙地,∴C点的横坐标是:1200÷160=7.5,纵坐标是1200-80×7.5=600,即点C的坐标是(7.5,600)设线段BC对应的函数解析式为y=kx+b,∵点B(5,0),C(7.5,600)∴,,即线段BC所表示的函数关系式为:.(3)当第一辆慢车和第一辆快车相遇时,慢车从乙地到甲地行驶:5×80=400km,当第一辆慢车和第二辆快车相遇时,慢车从乙地到甲地行驶:5×80+0.5×80=440km,即此时从乙地到甲地行驶440km,∴第二列快车比第一列快车晚出发:5.5-440÷240=3.7h【题目点拨】此题考查一次函数的应用,解题关键在于根据图像上的特殊点明确其现实意义.22、(1);(2);(3)1【分析】(1)方法1:表示出阴影部分小正方形的的边长,再根据正方形的面积公式表示出面积即可.方法2:根据阴影部分的面积等于大正方形的面积减去四个小长方形的面积即可.(2)根据题(1)列出等量关系即可.(3)将代入(2)题即可求出.【题目详解】解:(1)(顺序可颠倒)(2)(3)∵∴此题中,则【题目点拨】本题考查的是完全平方公式的几何背景,熟练地掌握完全平方公式的几何背景是解本题的关键.23、(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;
(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论.【题目详解】(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE;
(2)如图2,∵△ABC和△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE,
∴BD=CE,①正确,∠ADB=∠AEC,
记AD与CE的交点为G,
∵∠AGE=∠DGO,
∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,
∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB上取一点F,使OF=OC,
∴△OCF是等边三角形,
∴CF=OC,∠OFC=∠OCF=60°=∠ACB,
∴∠BCF=∠ACO,
∵AB=AC,
∴△BCF≌△ACO(SAS),
∴∠AOC=∠BFC=180°-∠OFC=120°,
∴∠AOE=180°-∠AOC=60°,③正确,
连接AF,要使OC=OE,则有OC=CE,
∵BD=CE,
∴CF=OF=BD,
∴OF=BF+OD,
∴BF<CF,
∴∠OBC>∠BCF,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,
所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)如图3,
延长DC至P,使DP=DB,
∵∠BDC=60°,
∴△BDP是等边三角形,
∴BD=BP,∠DBP=60°,
∵∠BAC=60°=∠DBP,
∴∠ABD=∠CBP,
∵AB=CB,
∴△ABD≌△CBP(SAS),
∴∠BCP=∠A,
∵∠BCD+∠BCP=180°,
∴∠A+∠BCD=180°.【题目点拨】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.24、(1)见解析;(2)1【分析】(1)根据等腰直角三角形的性质得到DA=DB,根据等腰三角形的性质、线段垂直平分线的性质证明结论;(2)根据勾股定理求出G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国斜面无视差游标卡尺数据监测研究报告
- 2025至2030年中国手动旋开冷库门数据监测研究报告
- 2025至2030年中国冷冻液数据监测研究报告
- 2025至2030年中国传统花生仁数据监测研究报告
- 2025至2030年中国中式家具数据监测研究报告
- 2025年中国奶茶纸杯市场调查研究报告
- 家长如何协助培养孩子的社交技能研究报告
- 2025至2031年中国粘尼毛衫行业投资前景及策略咨询研究报告
- 2025至2030年中国驾驶员座椅数据监测研究报告
- 2024年环境保护科技项目合作合同
- 2023-2024学年度人教版一年级语文上册寒假作业
- 2024年预制混凝土制品购销协议3篇
- 2024-2030年中国高端私人会所市场竞争格局及投资经营管理分析报告
- GA/T 1003-2024银行自助服务亭技术规范
- 《消防设备操作使用》培训
- 新交际英语(2024)一年级上册Unit 1~6全册教案
- 2024年度跨境电商平台运营与孵化合同
- 2024年电动汽车充电消费者研究报告-2024-11-新能源
- 湖北省黄冈高级中学2025届物理高一第一学期期末考试试题含解析
- 上海市徐汇中学2025届物理高一第一学期期末学业水平测试试题含解析
- 稻壳供货合同范本
评论
0/150
提交评论