版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省吉水县外国语学校2024届八上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交轴于点,交轴于点,再分别一点为圆心,大于的长为半径画弧,两弧在第二象限交于点.若点的坐标为,则的值为()A. B. C. D.2.某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为S甲:方案二如图乙所示,绿化带面积为S乙.设,下列选项中正确的是()A. B. C. D.3.若关于x的分式方程有增根,则m的值是()A.0或3 B.3 C.0 D.﹣14.下列四组数据中,能作为直角三角形三边长的是()A.1,2,3 B.,3, C.,, D.0.3,0.4,0.55.下列命题中,真命题的个数是()①若,则;②的平方根是-5;③若,则;④所有实数都可以用数轴上的点表示.A.1个 B.2个 C.3个 D.4个6.等于()A.2 B.-2 C.1 D.07.下列各式:中,是分式的共有()个A.2 B.3 C.4 D.58.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分 B.中位数 C.方差 D.平均数9.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.10.把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y) B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y) D.(2﹣a)(2x﹣y)二、填空题(每小题3分,共24分)11.命题“如果两个角都是直角,那么这两个角相等”的逆命题是_____.12.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.13.如图,AD∥BC,E是线段AC上一点,若∠DAC=48°,∠AEB=80°,则∠EBC=_____度.14.观察下列图形的排列规律(其中△,○,☆,□分别表示三角形,圆,五角星,正方形):□○△☆□○△☆□○……,则第2019个图形是________.(填图形名称)15.两个最简二根式与相加得,则______.16.在平面直角坐标系中,矩形如图放置,动点从出发,沿所示方向运动,每当碰到矩形的边时反弹,每次反弹的路径与原路径成度角(反弹后仍在矩形内作直线运动),当点第次碰到矩形的边时,点的坐标为;当点第次碰到矩形的边时,点的坐标为__________.17.在8×8的格子纸上,1×1小方格的顶点叫做格点.△ABC的三个顶点都是格点(位置如图).若一个格点P使得△PBC与△PAC的面积相等,就称P点为“好点”.那么在这张格子纸上共有_____个“好点”.18.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.三、解答题(共66分)19.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.20.(6分)化简:然后选择你喜欢且符合题意的一个的值代入求值.分解因式:21.(6分)如图,将一长方形纸片放在平面直角坐标系中,,,,动点从点出发以每秒1个单位长度的速度沿向终点运动,运动秒时,动点从点出发以相同的速度沿向终点运动,当点、其中一点到达终点时,另一点也停止运动.设点的运动时间为:(秒)(1)_________,___________(用含的代数式表示)(2)当时,将沿翻折,点恰好落在边上的点处,求点的坐标及直线的解析式;(3)在(2)的条件下,点是射线上的任意一点,过点作直线的平行线,与轴交于点,设直线的解析式为,当点与点不重合时,设的面积为,求与之间的函数关系式.22.(8分)欧几里得是古希腊著名数学家、欧氏几何学开创者.下面问题是欧几里得勾股定理证法的一片段,同学们,让我们一起来走进欧几里得的数学王国吧!已知:在Rt△ABC,∠A=90°,分别以AB、AC、BC为边向外作正方形,如图,连接AD、CF,过点A作AL⊥DE分别交BC、DE于点K、L.(1)求证:△ABD≌△FBC(2)求证:正方形ABFG的面积等于长方形BDLK的面积,即:23.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地轿车的平均速度大于货车的平均速度,如图,线段OA、折线BCD分别表示两车离甲地的距离单位:千米与时间单位:小时之间的函数关系.线段OA与折线BCD中,______表示货车离甲地的距离y与时间x之间的函数关系.求线段CD的函数关系式;货车出发多长时间两车相遇?24.(8分)计算:(1)()﹣2+﹣(2)(﹣)2﹣(+)(﹣)25.(10分)某工厂准备在春节前生产甲、乙两种型号的新年礼盒共80万套,两种礼盒的成本和售价如下表所示;甲乙成本(元/套)2528售价(元/套)3038(1)该工厂计划筹资金2150万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒万套,增加生产乙种礼盒万套(,都为正整数),且两种礼盒售完后所获得的总利润恰为690万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.(3)在(2)的情况下,设实际生产的两种礼盒的总成本为万元,请写出与的函数关系式,并求出当为多少时成本有最小值,并求出成本的最小值为多少万元?26.(10分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【题目详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故=0,解得:a=.故答案选:D.【题目点拨】本题考查的知识点是作图—基本作图,坐标与图形性质,角平分线的性质,解题的关键是熟练的掌握作图—基本作图,坐标与图形性质,角平分线的性质作图—基本作图,坐标与图形性质,角平分线的性质.2、D【分析】由题意可求S甲=2ab-b2,S乙=2ab,代入可求k的取值范围.【题目详解】∵S甲=2ab-b2,S乙=2ab.∴∵a>b>0∴<k<1故选D.【题目点拨】本题考查了正方形的性质,能用代数式正确表示阴影部分面积是本题的关键.3、D【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程算出m的值.【题目详解】解:方程两边同乘(x-4)得∵原方程有增根,∴最简公分母x-4=0,解得x=4,把x=4代入,得,解得m=-1故选:D【题目点拨】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【题目详解】解:A、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;
B、()2+()2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;
D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.
故选:D.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5、B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题.【题目详解】①若,则,真命题;②的平方根是,假命题;③若,则,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B.【题目点拨】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键.6、C【解题分析】根据任何非0数的0次幂都等于1即可得出结论.【题目详解】解:故选C.【题目点拨】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.7、B【分析】根据分式的定义即可判断.【题目详解】是分式的有,,,有3个,故选B.【题目点拨】此题主要考查分式的判断,解题的关键是熟知分式的定义.8、B【解题分析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.考点:统计量的选择.9、A【解题分析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.10、A【分析】根据提公因式法因式分解即可.【题目详解】2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y).故选:A.【题目点拨】此题考查的是因式分解,掌握用提公因式法因式分解是解决此题的关键.二、填空题(每小题3分,共24分)11、如果两个角相等,那么两个角都是直角【解题分析】试题分析:将一个命题的题设和结论互换即可得到原命题的逆命题,所以命题“如果两个角都是直角,那么这两个角相等”的逆命题是如果两个角相等,那么这两个角都是直角.考点:命题与逆命题.12、720°.【解题分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【题目详解】这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【题目点拨】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180(n≥3)且n为整数);多边形的外角和等于360度.13、1【分析】根据平行线的性质求出∠ACB=∠DAC,再根据三角形外角的性质可得∠EBC的度数.【题目详解】解:∵AD∥BC,∠DAC=48°,∴∠ACB=∠DAC=48°,∵∠AEB=80°,∴∠EBC=∠AEB﹣∠ACB=1°.故答案为:1.【题目点拨】本题考查了平行线的性质以及三角形外角的性质,掌握基本性质是解题的关键.14、三角形【分析】根据图形的变化规律:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化即可求解.【题目详解】观察图形的变化可知:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化,2019÷4=504…3所以第2019个图形是三角形.故答案为:三角形.【题目点拨】本题考查了图形的变化类,解决本题的关键是观察图形的变化寻找规律.15、1【分析】两个最简二次根式可以相加,说明它们是同类二次根式,根据合并的结果即可得出答案.【题目详解】由题意得,与是同类二次根式,∵与相加得,∴,,
则.
故答案为:1.【题目点拨】本题考查了二次根式的加减运算,判断出与是同类二次根式是解答本题的关键.16、(8,3)【分析】根据反弹的方式作出图形,可知每6次碰到矩形的边为一个循环组依次循环,用2019除以6,根据商和余数的情况确定所对应的点的坐标即可.【题目详解】解:如图,当点P第2次碰到矩形的边时,点P的坐标为:(7,4);
当点P第6次碰到矩形的边时,点P的坐标为(0,3),
经过6次碰到矩形的边后动点回到出发点,
∵2019÷6=336…3,
∴当点P第2019次碰到矩形的边时为第337个循环组的第3次碰到矩形的边,
∴点P的坐标为(8,3).
故答案为:(8,3).【题目点拨】此题主要考查了点的坐标的规律,作出图形,观察出每6次碰到矩形的边为一个循环组依次循环是解题的关键.17、1【分析】要使△PBC与△PAC的面积相等,则P点到BC的距离必是P点到AC距离有2倍,通过观察便可确定P的所有位置,从而得出答案.【题目详解】解:∵AC=1,BC=4,∴当P到BCBC的距离是P点到AC的距离的2倍时,△PBC与△PAC的面积相等,满足这样的条件的P点共有如图所示的1个格点,∴在这张格子纸上共有1个“好点”.故答案为:1.【题目点拨】本题考查了三角形的面积,识图能力,正确理解新定义,确定P到BC,BC的距离是P点到AC的距离的2倍是解题的关键.18、1【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=10°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=10°,BD=AD=6,再由10°角所对的直角边等于斜边的一半即可求出结果.【题目详解】∵∠C=90°,∠ABC=60°,∴∠A=10°.∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=10°,∴BD=AD=6,∴CD=BD=6×=1.故答案为1.【题目点拨】本题考查了直角三角形的性质、含10°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.三、解答题(共66分)19、(1)四边形CDAF是平行四边形,理由详见解析;(2)四边形ADCF是菱形,证明详见解析.【解题分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=12BC,然后由四边形ADCF是平行四边形,证得四边形ADCF【题目详解】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE,在△AFE和△DBE中,∠AFE=∠DBE∠FAE=∠BDE∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=12BC=DC∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.【题目点拨】此题考查了平行四边形的判定与性质、全等三角形的判定与性质、直角三角形的性质以及菱形的判定.注意掌握直角三角形斜边上的中线等于斜边的一半定理的应用是解此题的关键.20、(1),取x=1,得原分式的值为(答案不唯一);(1)-y(1x-y)1.【分析】(1)先根据分式的运算法则进行化简,再选一个使原分式有意义的x的值代入求值即可;(1)先提取公因式,再利用完全平方公式进行二次分解即可.【题目详解】解:(1)原式=,取x=1代入上式得,原式.(答案不唯一)(1)原式=y(4xy-4x1-y1)=-y(1x-y)1.【题目点拨】本题考查分式的化简求值以及因式分解,掌握基本运算法则和乘法公式是解题的关键.21、(1)6-t,t+;(2)D(1,3),y=x+;(3)【分析】(1)根据点E,F的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线的解析式为:,从而得M(,3),分2种情况:①当点M在线段DB上时,②当点M在DB的延长线上时,分别求出与之间的函数关系式,即可.【题目详解】∵,,,∴OA=6,OC=3,∵AE=t×1=t,∴6-t,(t+)×1=t+,故答案是:6-t,t+;(2)当时,6-t=5,t+=,∵将沿翻折,点恰好落在边上的点处,∴DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,则EG=OC=3,CG=OE=5,∴DG=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线的解析式为:y=kx+b,把D(1,3),E(5,0)代入y=kx+b,得,解得:,∴直线的解析式为:y=x+;(3)∵MN∥DE,∴直线直线的解析式为:,令y=3,代入,解得:x=,∴M(,3).①当点M在线段DB上时,BM=6-()=,∴=,②当点M在DB的延长线上时,BM=-6=,∴=,综上所述:.【题目点拨】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.22、(1)见解析;(2)见解析【分析】(1)根据正方形的性质可得AB=FB,BD=BC,∠FBA=∠CBD=90°,从而证出∠FBC=∠ABD,然后利用SAS即可证出结论;(2)根据平行线之间的距离处处相等可得,然后根据全等三角形的性质可得,从而证出结论.【题目详解】(1)证明:∵四边形ABFG、四边形BDEC是正方形∴AB=FB,BD=BC,∠FBA=∠CBD=90°∴∠FBA+∠ABC=∠CBD+∠ABC即∠FBC=∠ABD在△ABD和△FBC中∴△ABD≌△FBC(SAS)(2)∵GC∥FB,AL∥BD∴,∵△ABD≌△FBC∴∴【题目点拨】此题考查的是正方形的性质、全等三角形的判定及性质和平行线公理,掌握正方形的性质、全等三角形的判定及性质和平行线之间的距离处处相等是解决此题的关键.23、(1)线段OA表示货车货车离甲地的距离y与时间x之间的函数关系;(2);(3)货车出发小时两车相遇.【分析】(1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;(3)根据题意可以求得OA对应的函数解析式,从而可以解答本题.【题目详解】线段OA表示货车货车离甲地的距离y与时间x之间的函数关系,理由:千米时,,,轿车的平均速度大于货车的平均速度,线段OA表示货车离甲地的距离y与时间x之间的函数关系,故答案为OA;设CD段函数解析式为,,在其图象上,,解得,段函数解析式:;设线段OA对应的函数解析式为,,得,即线段OA对应的函数解析式为,,解得,即货车出发小时两车相遇.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)4+;(2)4﹣2【分析】(1)先根据负整数指数幂的意义计算,然后把二次根式化为最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子信息专业的课程设计
- 皮肤净化管理课程设计
- 2024至2030年中国燃气空调行业投资前景及策略咨询研究报告
- 机械原理课程设计挤压机
- 2024年突破功能型插座项目可行性研究报告
- 2024至2030年中国塑胶薄膜双面胶带数据监测研究报告
- 2024年刨刀刀片项目可行性研究报告
- 中国蛋糕行业竞争状况及投资效益预测研究报告(2024-2030版)
- 中国脱硝钛白粉产业运行状况及应用前景预测研究报告(2024-2030版)
- 中国聚四氟乙烯行业竞争格局及发展规模预测研究报告(2024-2030版)
- 2024普通高中物理课程标准解读
- 2024年广西玉林市自来水有限公司招聘笔试参考题库含答案解析
- 2022年度食品安全负责人考试题库(含答案)
- 教师近3年任教学科学生学业水平和综合素质
- 企业法律合规与外部监管的内外因素分析
- 2022年版煤矿安全规程
- 九年级数学上册 期中考试卷(湘教版)
- 冷弯机行业市场研究报告
- 牛津英语四年级上册4A-M2-Unit-3-The-lion-and-the-mouse优秀信息化教案附反思
- 山东省青岛市胶州市2023-2024学年八年级上学期期中英语试卷
- 第三单元“阅读策略”(主题阅读) 六年级语文上册阅读理解(统编版)
评论
0/150
提交评论