版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市江阴市第二中学八上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AB和AD,点A B.AB和AC,点BC.AC和BC,点C D.AD和BC,点D2.如图,是的中线,E,F分别是和延长线上的点,且,连接,,下列说法:①和面积相等;②;③;④;⑤和周长相等.其中正确的个数有()A.1个 B.2个 C.3个 D.4个3.据益阳气象部门记载,2018年6月30日益阳市最高气温是33℃,最低气温是24℃,则当天益阳市气温(℃)的变化范围是()A. B. C. D.4.下列各组数是勾股数的是()A.6,7,8 B.1,2,3 C.3,4,5 D.5,5,95.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cm D.6cm,2cm,3cm6.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.7.如图,在数轴上,点A表示的数是,点B,C表示的数是两个连续的整数,则这两个整数为()A.-5和-4 B.-4和-3 C.3和4 D.4和58.如图,观察图中的尺规作图痕迹,下列说法错误的是()A. B. C. D.9.根据下列表述,不能确定具体位置的是()A.教室内的3排4列 B.渠江镇胜利街道15号C.南偏西 D.东经,北纬10.下列图案中,是轴对称图形的有()个A.1 B.2 C.3 D.411.下列代数式中,属于分式的是()A.-3 B. C. D.12.下列图形中,是轴对称图形的是().A. B. C. D.二、填空题(每题4分,共24分)13.若是一个完全平方式,则的值是______.14.等腰三角形一腰上的高与另一腰的夹角为20°,则该等腰三角形的底角的度为______.15.如图,点F是△ABC的边BC延长线上一点,DF⊥AB于点D,∠A=30°,∠F=40°,∠ACF的度数是_____.16.如图矩形中,对角线相交于点,若,cm,则的长为__________cm.17.在一次知识竞赛中,有25道抢答题,答对一题得4分,答错或不答每题扣2分,成绩不低于60分就可获奖.那么获奖至少要答对___________道题.18.实数P在数轴上的位置如图所示,化简+=________.三、解答题(共78分)19.(8分)(1)计算:(2)先化简,后求值:;其中20.(8分)分解因式:.21.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?22.(10分)如图,AB是线段,AD和BC是射线,AD//BC.(1)尺规作图:作AB的垂直平分线EF,垂足为O,且分别与射线BC、AD相交于点E、F(不写作法,保留作图痕迹);(2)在(1)条件下,连接AE,求证:AE=AF.23.(10分)计算及解方程组:(1);(2);(3)解方程组:.24.(10分)(1)已知a2+b2=6,ab=1,求a﹣b的值;(2)已知a=,求a2+b2的值.25.(12分)如图,锐角,,点是边上的一点,以为边作,使,.(1)过点作交于点,连接(如图①)①请直接写出与的数量关系;②试判断四边形的形状,并证明;(2)若,过点作交于点,连接(如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.26.如图,正方形的边,在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点,与轴交于点,连接,设点运动的时间为秒.(1)线段(用含的式子表示),点的坐标为(用含的式子表示),的度数为.(2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.(3)①当为何值时,有.②的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【题目详解】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:D.【题目点拨】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.2、C【分析】由三角形中线的定义可得,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明和全等,判断出②正确,根据②得到,进而证明,判断出③正确,由为任意三角形,判断④⑤错误,问题得解.【题目详解】解:是的中线,,∵和底边BD,CD上高相同,和面积相等,故①正确;在和中,,,故②正确;,,故③正确;由为任意三角形,故④⑤错误.故选:.【题目点拨】本题考查了等底等高的三角形的面积相等,全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.3、D【解题分析】根据题意和不等式的定义,列不等式即可.【题目详解】解:根据题意可知:当天益阳市气温(℃)的变化范围是故选D.【题目点拨】此题考查的是不等式的定义,掌握不等式的定义是解决此题的关键.4、C【分析】直接根据勾股数的概念进行排除选项即可.【题目详解】A、,故不符合题意;B、,故不符合题意;C、,故符合题意;D、,故不符合题意;故选C.【题目点拨】本题主要考查勾股数,熟练掌握勾股数的概念及勾股定理是解题的关键.5、A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【题目详解】A、2+3>4,能围成三角形;
B、1+2<4,所以不能围成三角形;
C、1+2=3,不能围成三角形;
D、2+3<6,所以不能围成三角形;
故选:A.【题目点拨】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【题目详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【题目点拨】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.7、B【分析】先估算的大小,再求出﹣的大小即可判断.【题目详解】∵9<13<16,∴3<<4,∴﹣4<﹣<﹣3,故选:B.【题目点拨】本题考查了实数与数轴,解题关键是会估算二次根式的大小.8、A【分析】由作法知,∠DAE=∠B,进而根据同位角相等,两直线平行可知AE∥BC,再由平行线的性质可得∠C=∠EAC.【题目详解】由作法知,∠DAE=∠B,∴AE∥BC,∴∠C=∠EAC,∴B、C、D正确;无法说明A正确.故选A.【题目点拨】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.9、C【分析】根据平面内的点与有序实数对一一对应分别对各选项进行判断.【题目详解】A、教室内的3排4列,可以确定具体位置,不合题意;
B、渠江镇胜利街道15号,可以确定具体位置,不合题意;
C、南偏西30,不能确定具体位置,符合题意;
D、东经108°,北纬53°,可以确定具体位置,不合题意;
故选:C.【题目点拨】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.10、B【分析】根据轴对称图形的概念求解即可.【题目详解】①不是轴对称图形,故此选项不合题意;
②是轴对称图形,故此选项正确;
③是轴对称图形,故此选项正确;
④不是轴对称图形,故此选项不合题意;是轴对称图形的有2个
故选:B.【题目点拨】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:-3;;是整式;符合分式的概念,是分式故选:C【题目点拨】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.12、A【分析】轴对称图形的定义:图形沿某一条直线折叠后,直线两旁的部分重合,则这个图形是轴对称图形;根据轴对称图形定义,逐个判断,即可得到答案.【题目详解】四个选项中,A是轴对称图形,其他三个不是轴对称图形;故选:A.【题目点拨】本题考查了轴对称图形的知识;解题的关键是熟练掌握轴对称图形的定义,即可完成求解.二、填空题(每题4分,共24分)13、【分析】利用完全平方公式的结构特征判断即可得到k的值.【题目详解】解:∵是一个完全平方式,∴k=±2×2×3=±12故答案为:±12【题目点拨】本题考查的完全平方式,中间项是±两个值都行,别丢掉一个.14、55°或35°.【分析】根据等腰三角形的性质及三角形内角和定理进行分析,注意分类讨论思想的运用.【题目详解】如图①,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠A=70°,∴∠ABC=∠C=(180°-70°)÷2=55°;如图②,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠BAC=20°+90°=110°,∴∠ABC=∠C=(180°-110°)÷2=35°.故答案为55°或35°.【题目点拨】此题主要考查等腰三角形的性质,三角形内角和定理及三角形外角的性质,进行分类讨论是解题的关键.15、80°【分析】根据三角形的内角和可得∠AED=60°,再根据对顶角相等可得∠AED=∠CEF=60°,再利用三角形的内角和定理即可求解.【题目详解】解:∵DF⊥AB,∴∠ADE=90°,∵∠A=30°,∴∠AED=∠CEF=90°﹣30°=60°,∴∠ACF=180°﹣∠F﹣∠CEF=180°﹣40°﹣60°=80°,故答案为:80°.【题目点拨】本题考查三角形的内角和定理、对顶角相等,灵活运用三角形的内角和定理是解题的关键.16、2【解题分析】根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=1,易求AC.解:已知∠AOB=60°,根据矩形的性质可得AO=BO,所以∠OAB=∠ABO=60度.因为AB=1,所以AO=BO=AB=1.故AC=2.本题考查的是矩形的性质以及等边三角形的有关知识.17、1【分析】设答对x道题可以获奖,则答错或不答(25-x)道题,根据成绩=4×答对的题目数-2×答错或不答的题目数,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【题目详解】解:设答对x道题可以获奖,则答错或不答(25-x)道题,依题意,得:4x-2(25-x)≥60,解得:x≥,又x为整数,故x的最小为1,故答案为:1.【题目点拨】题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.18、1【解题分析】根据图得:1<p<2,+=p-1+2-p=1.三、解答题(共78分)19、(1);(2),【分析】(1)分式除法,先进行因式分解,然后再将除法转化成乘法进行计算;(2)分式的混合运算,先做小括号里的异分母分式减法,要进行通分,能进行因式分解的先进行因式分解,然后做除法,最后代入求值.【题目详解】(1);(2)原式,当时,原式.【题目点拨】本题考查分式的混合运算,掌握因式分解的技巧,运算顺序,正确计算是解题关键.20、【分析】先提取公因式3,再根据完全平方公式进行二次分解,即可得到答案.【题目详解】解:原式=3(x1-1x+1)
=3(x-1)1.【题目点拨】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.21、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【题目详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【题目点拨】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.22、(1)见详解;(2)见详解【分析】(1)按照垂直平分线的作法画出AB的垂直平分线即可;(2)通过平行线的性质及垂直平分线的性质得出,然后通过ASA证明,再由全等三角形的性质即可得出结论.【题目详解】(1)如图(2)如图,连接AE∵EF是AB的垂直平分线在和中,【题目点拨】本题主要考查尺规作图及全等三角形的判定及性质,掌握垂直平分线的作法和全等三角形的判定方法及性质是解题的关键.23、(1);(2);(3)【分析】(1)根据二次根式的混合运算法则进行计算;(2)先算括号里的,再算除法,最后算减法;(3)利用加减消元法解得即可.【题目详解】解:(1)原式==;(2)原式===;(3),①×2-②×5得:-7y=7,解得y=-1,代入②,解得x=2,∴方程组的解为.【题目点拨】本题考查了二次根式的混合运算和解二元一次方程组,解题的关键是掌握运算法则和运算顺序,以及方程组解法的选择.24、(1)±1;(1)1.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(1)先分母有理化,再根据完全平方公式和平方差公式即可求解.【题目详解】(1)由a1+b1=6,ab=1,得a1+b1-1ab=4,(a-b)1=4,a-b=±1.(1),,【题目点拨】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.25、(1)①;②平行四边形,证明见解析;(2)成立,证明见解析.【分析】(1)①根据,两角有公共角,可证;②连接EB,证明△EAB≌△DAC,可得,再结合平行线的性质和等腰三角形的判定定理可得EF=DC,由此可根据一组对边平行且相等的四边形是平行四边形证明四边形为平行四边形.(2)根据,可证明△AED和△ABC为等边三角形,再根据ED∥FC结合等边三角形的性质,得出∠AFC=∠BDA,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形.【题目详解】解:(1)①,理由如下:∵,,,∴,∴;②证明:如下图,连接EB,在△EAB和△DAC中∵∴△EAB≌△DAC(SAS)∴,∵,∴,∴,∵,∴,∴,∴,∴∴四边形为平行四边形;(2)成立;理由如下:
理由如下:∵,∴,∵AE=AD,AB=AC,∴△AED和△ABC为等边三角形,∴∠B=60°,∠ADE=60°,AD=ED,∵ED∥FC,
∴∠EDB=∠FCB,
∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB,
∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),
∴AD=FC,
∵AD=ED,
∴ED=CF,
又∵ED∥CF,
∴四边形EDCF是平行四边形.【题目点拨】本题考查全等三角形的性质和判定,等腰三角形的性质和判定,等边三角形的性质和判定,平行四边形的判定定理,平行线的性质.在做本题时可先以平行四边形的判定定理进行分析,在后两问中已知一组对边平行,所以只需证明这一组对边相等即可,一般证明线段相等就是证明相应的三角形全等.本题中是间接证明全等,在证明线段相等的过程中还应用到等腰三角形的判定定理(第(1)小题的第②问)和等边三角形的性质(第(2)小题),难度较大.26、(1),(t,t),45°;(2)△POE周长是一个定值为1,理由见解析;(3)①当t为(5-5)秒时,BP=BE;②能,PE的长度为2.【分析】(1)由勾股定理得出BP的长度;易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.
(2)延长OA到点F,使得AF=CE,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.再证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.即可得出答案;
(3)①证明Rt△BAP≌Rt△BCE(HL).得出AP=CE.则PO=EO=5-t.由等腰直角三角形的性质得出PE=PO=(5-t).延长OA到点F,使得AF=CE,连接BF,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.得出方程(5-t)=2t.解得t=5-5即可;
②由①得:当BP=BE时,AP=CE.得出PO=EO.则△POE的面积=OP2=5,解得OP=,得出PE=OP-=2即可.【题目详解】解:(1)如图1,
由题可得:AP=OQ=1×t=t,
∴AO=PQ.
∵四边形OABC是正方形,
∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.
∴BP=,
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°-∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t
∴点D坐标为(t,t).
故答案为:,(t,t),45°.
(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保护皮肤中班教案反思
- 美丽的小兴安岭说课稿
- 寒号鸟说课稿第课时
- 建筑工程施工合同毛利分析
- 血站员工满意度调查与分析
- 旅游景区开发律师聘用合同
- 石材工程合作合同
- 建筑工地电力保障协议
- 校园智能路灯系统招投标流程
- 大型水利设施运输协议
- 和灯做朋友(教学设计)-2023-2024学年五年级上册综合实践活动蒙沪版
- 乐理知识考试题库130题(含答案)
- 人教版(2024)七年级地理上册2.2《地形图的判读》精美课件
- 2024年共青团入团积极分子团校结业考试试题库及答案
- 2024年辽宁高考历史试题(含答案和解析)
- 黄河商品交易市场介绍稿
- Unit 3 My friends Part C Story time(教学设计)-2024-2025学年人教PEP版英语四年级上册
- 2024中国海油校园招聘2024人(高频重点提升专题训练)共500题附带答案详解
- 2024八年级数学上册第十五章分式检测题含解析新版新人教版
- 孙中山诞辰纪念日主题班会主题班会
- 2024国开大学《经济学基础》形考任务2答案
评论
0/150
提交评论