福建省泉州市泉港一中高二下学期期中数学试卷(理科)_第1页
福建省泉州市泉港一中高二下学期期中数学试卷(理科)_第2页
福建省泉州市泉港一中高二下学期期中数学试卷(理科)_第3页
福建省泉州市泉港一中高二下学期期中数学试卷(理科)_第4页
福建省泉州市泉港一中高二下学期期中数学试卷(理科)_第5页
已阅读5页,还剩26页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2016—2017学年福建省泉州市泉港一中高二(下)期中数学试卷(理科)一、选择题1。在复平面内,复数i(2﹣i)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在二项式的展开式中,各项系数之和为A,各项二项式系数之和为B,且A+B=72,则展开式中常数项的值为()A.6 B.9 C.12 D.183.我们知道:“心有灵犀"一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在{1,2,3,4,5,6}中说一个数,甲说的数记为a,乙说的数记为b,若|a﹣b|≤1,则称甲、乙两人“心有灵犀”,由此可以得到甲、乙两人“心有灵犀”的概率是()A. B. C. D.4.收集一只棉铃虫的产卵数y与温度X的几组数据后发现两个变量有相关关系,并按不同的曲线来拟合y与X之间的回归方程,算出对应相关指数R2如下表:则这组数据模型的回归方程的最好选择应是()拟合曲线直线指数曲线抛物线二次曲线y与x回归方程=19.8x﹣463.7=e0。27x﹣3.84=0。367x2﹣202=相关指数R20。7460。9960。9020.002A.=19。8x﹣463.7 B.=e0。27x﹣3。84C.=0。367x2﹣202 D.=5.已知随机变量ξ服从正态分布N(1,σ2).若P(0<ξ≤1)=0.4,则P(ξ≥2)=()A.0.4 B.0。3 C.0.2 D.0。16.n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6 B.7 C.8 D.97.设随机变量X的概率分布列如表,则P(|X﹣3|=1)()X1234PmA. B. C. D.8.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点种任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()A. B. C. D.9.反证法证明三角形的内角中至少有一个不小于60°,反设正确的是()A.假设三内角都不大于60°B.假设三内角都小于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个小于60°10.某单位拟安排6位员工在今年5月28日至30日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值28日,乙不值30日,则不同的安排方法共有()A.30种 B.36种 C.42种 D.48种11.将数字“123367"重新排列后得到不同的偶数个数为()A.72 B.120 C.192 D.24012.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0。8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为()A.0。998 B.0.046 C.0。002 D.0。954二、填空题复数(a∈R,i为虚数单位)为纯虚数,则复数z=a+i的模为.14.在(2x+1)(x﹣1)5的展开式中含x3项的系数是(用数字作答).15.如图所示,在边长为1的正方形OABC内任取一点P,用A表示事件“点P恰好取自由曲线与直线x=1及x轴所围成的曲边梯形内”,B表示事件“点P恰好取自阴影部分内”,则P(B|A)=.16.有6名选手参加学校唱歌比赛,学生甲猜测:4号或5号选手得第一名;学生乙猜测:3号选手不可能得第一名;学生丙猜测:1,2,6号选手中的一位获得第一名;学生丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁四人中只有1人猜对,则获得第一名的选手号数是.三、解答题(6大题,共70分.解答时应按要求写出证明过程或演算步骤)17.(10分)已知盒子中有4个红球,2个白球,从中一次抓三个球,(1)求没有抓到白球的概率;(2)记抓到球中的红球数为X,求X的分布列和数学期望.18.(12分)如图,已知四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)求二面角B﹣DE﹣C的余弦值.19.(12分)某单位共有10名员工,他们某年的收入如表:员工编号12345678910年薪(万元)44。5656。57。588.5951(1)求该单位员工当年年薪的平均值和中位数;(2)从该单位中任取2人,此2人中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望;(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8。5万元,预测该员工第五年的年薪为多少?附:线性回归方程中系数计算公式分别为:,,其中为样本均值.20.(12分)2016世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:赞成“自助游”不赞成“自助游"合计男性30女性10合计100(1)若在100这人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过0。05前提下,认为赞成“自助游”是与性别有关系?(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”人数为X,求X的分布列和数学期望.附:K2=P(K2≥k)0.1000.0500。0100。001k2.7063.8416.63510。82821.(12分)已知函数f(x)=.(Ⅰ)若a=2,求f(x)在(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间上的最小值;(Ⅲ)若f(x)在区间(1,e)上恰有两个零点,求a的取值范围.22.(12分)已知椭圆M:+=1(a>b>0)的长轴长为4,且与椭圆+=1有相同的离心率.(Ⅰ)求椭圆M的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与M有两个交点A、B,且⊥?若存在,写出该圆的方程,并求||的取值范围,若不存在,说明理由.

2016-2017学年福建省泉州市泉港一中高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题1。在复平面内,复数i(2﹣i)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】A4:复数的代数表示法及其几何意义.【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.2.在二项式的展开式中,各项系数之和为A,各项二项式系数之和为B,且A+B=72,则展开式中常数项的值为()A.6 B.9 C.12 D.18【考点】DC:二项式定理的应用.【分析】通过给x赋值1得各项系数和,据二项式系数和公式求出B,列出方程求出n,利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.【解答】解:在二项式的展开式中,令x=1得各项系数之和为4n∴A=4n据二项展开式的二项式系数和为2n∴B=2n∴4n+2n=72解得n=3∴=的展开式的通项为=令得r=1故展开式的常数项为T2=3C31=9故选项为B【点评】本题考查求展开式各项系数和的方法是赋值法;考查二项式系数的性质;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.3.我们知道:“心有灵犀”一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在{1,2,3,4,5,6}中说一个数,甲说的数记为a,乙说的数记为b,若|a﹣b|≤1,则称甲、乙两人“心有灵犀”,由此可以得到甲、乙两人“心有灵犀”的概率是()A. B. C. D.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】本题是一个等可能事件的概率,试验发生包含的事件是从6个数字中各自想一个数字,可以重复,可以列举出共有36种结果,满足条件的事件可以通过列举得到结果,根据等可能事件的概率公式得到结果.【解答】解:(I)由题意知,本题是一个等可能事件的概率列举出所有基本事件为:(1,1),(2,2),(2,3),(4,4),(5,5),(6,6)(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(1,6),(6,1)(1,3),(3,1),(2,4),(4,2),(3,5),(5,3),(4,6),(6,4),(1,4),(4,1),(2,5),(5,2),(3,6),(6,3),(1,5),(5,1),(2,6),(6,2),(1,6),(6,1),共计36个.记“两人想的数字相同或相差1”为事件B,事件B包含的基本事件为:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),共计16个.∴P==,∴“甲乙心有灵犀"的概率为.故选D.【点评】本题考查古典概型及其概率公式.考查利用分类计数原理表示事件数,考查理解能力和运算能力,注意列举出的事件数做到不重不漏.4.收集一只棉铃虫的产卵数y与温度X的几组数据后发现两个变量有相关关系,并按不同的曲线来拟合y与X之间的回归方程,算出对应相关指数R2如下表:则这组数据模型的回归方程的最好选择应是()拟合曲线直线指数曲线抛物线二次曲线y与x回归方程=19。8x﹣463.7=e0.27x﹣3.84=0.367x2﹣202=相关指数R20。7460.9960。9020.002A.=19.8x﹣463.7 B.=e0.27x﹣3.84C.=0.367x2﹣202 D.=【考点】BK:线性回归方程.【分析】两个变量y与x的回归模型中,它们的相关指数R2,越接近于1,这个模型的拟合效果越好,在所给的四个选项中0。98是相关指数最大的值,得到结果.【解答】解:两个变量y与x的回归模型中,它们的相关指数R2,越接近于1,这个模型的拟合效果越好,在所给的四个选项中0.996是相关指数最大的值,∴拟合效果最好的模型是指数曲线:=e0。27x﹣3.84.故选:B.【点评】本题考查相关指数,这里不用求相关指数,而是根据所给的相关指数判断模型的拟合效果,这种题目解题的关键是理解相关指数越大拟合效果越好.5.已知随机变量ξ服从正态分布N(1,σ2).若P(0<ξ≤1)=0。4,则P(ξ≥2)=()A.0.4 B.0.3 C.0。2 D.0。1【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】利用正态分布的对称性得出答案.【解答】解:∵ξ~N(1,σ2),∴P(ξ≥2)=P(ξ≤0)=P(ξ≤1)﹣P(0<ξ≤1)=0。5﹣0.4=0。1.故选:D.【点评】本题考查了正态分布的特点,属于基础题.6.(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6 B.7 C.8 D.9【考点】DB:二项式系数的性质.【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x5与x6的系数,列出方程求出n.【解答】解:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故选B【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.7.设随机变量X的概率分布列如表,则P(|X﹣3|=1)()X1234PmA. B. C. D.【考点】CG:离散型随机变量及其分布列.【分析】根据随机变量X的概率分布列,求出m的值,再利用和概率公式计算P(|X﹣3|=1)的值.【解答】解:根据随机变量X的概率分布列知,+m++=1,解得m=;又|X﹣3|=1,∴X=2或X=4,则P(|X﹣3|=1)=P(X=2)+P(X=4)=+=.故选:B.【点评】本题考查了离散型随机变量的分布列计算问题,是基础题.8.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点种任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()A. B. C. D.【考点】CB:古典概型及其概率计算公式.【分析】先用组合数公式求出甲乙从这6个点中任意选两个点连成直线的条数共有C62,再用分步计数原理求出甲乙从中任选一条共有225种,利用正八面体找出相互平行但不重合共有共12对,代入古典概型的概率公式求解.【解答】解:甲从这6个点中任意选两个点连成直线,共有C62=15条,乙也从这6个点中任意选两个点连成直线,共有C62=15条,甲乙从中任选一条共有15×15=225种不同取法,因正方体6个面的中心构成一个正八面体,有六对相互平行但不重合的直线,则甲乙两人所得直线相互平行但不重合共有12对,这是一个古典概型,所以所求概率为=,故选D.【点评】本题的考点是古典概型,利用组合数公式和分步计数原理求出所有基本事件的总数,再通过正方体6个面的中心构成一个正八面体求出相互平行但不重合的对数,代入公式求解.9.反证法证明三角形的内角中至少有一个不小于60°,反设正确的是()A.假设三内角都不大于60°B.假设三内角都小于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个小于60°【考点】R9:反证法与放缩法.【分析】由于本题所给的命题是一个特称命题,故它的否定即为符合条件的反设,写出其否定,对照四个选项找出答案即可【解答】解:用反证法证明命题:“一个三角形中,至少有一个内角不小于60°"时,应由于此命题是特称命题,故应假设:“三角形中三个内角都小于60°”故选:B【点评】本题考查反证法的基础概念,解答的关键是理解反证法的规则及特称命题的否定是全称命题,本题是基础概念考查题,要注意记忆与领会.10.某单位拟安排6位员工在今年5月28日至30日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值28日,乙不值30日,则不同的安排方法共有()A.30种 B.36种 C.42种 D.48种【考点】D8:排列、组合的实际应用.【分析】根据题意,用间接法分析,首先计算计算6名职工在3天值班的所有情况数目,再排除其中甲在5月28日和乙在5月30日值班的情况数目,再加上甲在5月28日且乙在5月30日值班的数目,即可得答案.【解答】解:根据题意,先安排6人在3天值班,有C62×C42×C22种情况,其中甲在5月28日值班有C51×C42×C22种情况,乙在5月30日值班有C51×C42×C22种情况,甲在5月28日且乙在5月30日值班有C41×C31种情况,则不同的安排方法共有C62×C42×C22﹣2×C51×C42×C22+C41×C31=42种,故选:C.【点评】本题考查组合数公式的运用,注意组合与排列的不同,本题中要注意各种排法间的关系,做到不重不漏.11.将数字“123367"重新排列后得到不同的偶数个数为()A.72 B.120 C.192 D.240【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①.在2、6中任选1个安排在个位数字,②由倍分法分析前5个数位的排法数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求为偶数,则其个位数字为2或6,有2种情况,②、将其余5个数字全排列,安排在前5个数位,由于其中有2个“3",则前5个数位有=60种情况,则可以得到2×60=120个不同的偶数;故选:B【点评】本题考查排列、组合的应用,注意数字中有两个“3”.12.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0。8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为()A.0.998 B.0。046 C.0。002 D.0.954【考点】CA:n次独立重复试验中恰好发生k次的概率.【分析】三架武装直升机各向目标射击一次,可以设Ak表示“第k架武装直升机命中目标”.分两种情况:①恰有两架武装直升机命中目标,分为三种:甲乙射中丙不中或甲丙射中乙不中或乙丙射中甲不中;②三架直升机都命中.分别求出其概率,再用加法原理,相加即可得到目标被摧毁的概率.【解答】解:设Ak表示“第k架武装直升机命中目标”.k=1,2,3.这里A1,A2,A3独立,且P(A1)=0。9,P(A2)=0.9,P(A3)=0。8.①恰有两人命中目标的概率为P()=P(A1)P(A2)P()+P(A1)P()P(A3)+P()P(A2)P(A3)=0。9×0.9×0.1+0。9×0。1×0.8+0。1×0。9×0.8=0.306②三架直升机都命中的概率为:0.9×0。9×0.8=0。648∴目标被摧毁的概率为:P=0。306+0.648=0。954.故选D.【点评】此题主要考查n次重复独立试验发生k次的概率问题,其中涉及到相互独立事件的概率乘法公式.这两个知识点在高考中都属于重点考点,希望同学们多加理解.二、填空题(2017春•泉港区校级期中)复数(a∈R,i为虚数单位)为纯虚数,则复数z=a+i的模为.【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简,再结合已知条件列出方程组,求解可得a的值,然后由复数求模公式计算得答案.【解答】解:∵==为纯虚数,∴,解得a=2.∴z=2+i.则复数z=2+i的模为:.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念以及复数模的求法,是基础题.14.在(2x+1)(x﹣1)5的展开式中含x3项的系数是﹣10(用数字作答).【考点】DC:二项式定理的应用.【分析】把(x﹣1)5按照二项式定理展开,可得(2x+1)(x﹣1)5展开式中含x3项的系数.【解答】解:∵(2x+1)(x﹣1)5=(2x+1)(•x5﹣•x4+•x3﹣•x2+•x﹣)故含x3项的系数是2(﹣)+=﹣10,故答案为:﹣10.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.15.如图所示,在边长为1的正方形OABC内任取一点P,用A表示事件“点P恰好取自由曲线与直线x=1及x轴所围成的曲边梯形内",B表示事件“点P恰好取自阴影部分内”,则P(B|A)=.【考点】CM:条件概率与独立事件.【分析】阴影部分由函数y=x与围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.【解答】解:根据题意,阴影部分由函数y=x与围成,其面积为(﹣x)dx=()=,A表示事件“点P恰好取自曲线与直线x=1及x轴所围成的曲边梯形内”,面积为+=,则P(B|A)等于=.故答案为.【点评】本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.16.有6名选手参加学校唱歌比赛,学生甲猜测:4号或5号选手得第一名;学生乙猜测:3号选手不可能得第一名;学生丙猜测:1,2,6号选手中的一位获得第一名;学生丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁四人中只有1人猜对,则获得第一名的选手号数是3.【考点】F4:进行简单的合情推理.【分析】分别假设甲对、乙对、丙对,丁对,由已知条件进行推理,由此能求出结果.【解答】解:若甲猜对,则乙也猜对,与题意不符,故甲猜错;若乙猜对,则丙猜对,与题意不符,故乙猜错;若丙猜对,则乙猜对,与题意不符,故丙猜错;∵甲、乙、丙、丁四人中只有1人猜对,∴丁猜对.综上,获得第一名的选手号数是3.故答案为:3.【点评】本题考查推理能力,考查进行简单的合情推理,考查学生分析解决问题的能力,考查命题的真假判断及应用,是中档题.三、解答题(6大题,共70分.解答时应按要求写出证明过程或演算步骤)17.(10分)(2017春•泉港区校级期中)已知盒子中有4个红球,2个白球,从中一次抓三个球,(1)求没有抓到白球的概率;(2)记抓到球中的红球数为X,求X的分布列和数学期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)使用组合数公式计算概率;(2)根据超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(1)没有抓到白球,即取到的全是红球,∴没有抓到白球的概率是.(2)X的所有可能取值为1,2,3,,=,,∴X的分布列为:X123P∴E(X)=1×+2×+3×=2.【点评】本题考查了组合数公式,超几何分布,数学期望的计算,属于基础题.18.(12分)(2012•雁塔区校级模拟)如图,已知四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)求二面角B﹣DE﹣C的余弦值.【考点】MR:用空间向量求平面间的夹角;LS:直线与平面平行的判定.【分析】(1)法一:连接AC,设AC与BD交于O点,连接EO.由底面ABCD是正方形,知OE∥PA由此能够证明PA∥平面BDE.法二:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,设PD=DC=2,则,设是平面BDE的一个法向量,由向量法能够证明PA∥平面BDE.(2)由(1)知是平面BDE的一个法向量,又是平面DEC的一个法向量.由向量法能够求出二面角B﹣DE﹣C的余弦值.【解答】(1)解法一:连接AC,设AC与BD交于O点,连接EO.∵底面ABCD是正方形,∴O为AC的中点,又E为PC的中点,∴OE∥PA,∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.解法二:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,设PD=DC=2,则A(2,0,0),P(0,0,2),E(0,1,1),B(2,2,0).∴,设是平面BDE的一个法向量,则由,得,∴.∵,∴,又PA⊄平面BDE,∴PA∥平面BDE.(2)由(1)知是平面BDE的一个法向量,又是平面DEC的一个法向量.设二面角B﹣DE﹣C的平面角为θ,由题意可知.∴.【点评】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,是高考的重点题型.解题时要认真审题,仔细解答,注意向量法的合理运用.19.(12分)(2017•湖北模拟)某单位共有10名员工,他们某年的收入如表:员工编号12345678910年薪(万元)44.5656.57。588。5951(1)求该单位员工当年年薪的平均值和中位数;(2)从该单位中任取2人,此2人中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望;(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5。5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?附:线性回归方程中系数计算公式分别为:,,其中为样本均值.【考点】BK:线性回归方程.【分析】(1)根据表格数据计算该单位员工当年年薪的平均值和中位数;(2)ξ取值为0,1,2,求出相应的概率,即可求ξ的分布列和期望;(3)求出线性回归方程,根据回归方程预测.【解答】解:(1)平均值为11万元,中位数为=7万元.(2)年薪高于7万的有5人,低于或等于7万的有5人;ξ取值为0,1,2。,,,所以ξ的分布列为ξ012P数学期望为.(3)设xi,yi(i=1,2,3,4)分别表示工作年限及相应年薪,则,,,得线性回归方程:y=1.4x+2。5.可预测该员工第5年的年薪收入为9.5万元.【点评】本题考查了古典概型的概率计算,求ξ的分布列和期望,线性回归方程的解法及应用,属于中档题.20.(12分)(2017•黄山二模)2016世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:赞成“自助游”不赞成“自助游”合计男性30女性10合计100(1)若在100这人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过0.05前提下,认为赞成“自助游”是与性别有关系?(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”人数为X,求X的分布列和数学期望.附:K2=P(K2≥k)0。1000.0500。0100。001k2。7063。8416。63510。828【考点】BO:独立性检验的应用.【分析】(1)根所给数据得到列联表,利用公式求得K2,与临界值比较,即可得到结论.(2)X的所有可能取值为:0,1,2,3,求出相应的概率,即可得到X的分布列、数学期望.【解答】解:(1)赞成“自助游”不赞成“自助游”合计男性301545女性451055合计7525100将2×2列联表中的数据代入计算,得K2的观测值:,∵3。030<3.841,∴在犯错误的概率不超过0.05前提下,不能认为赞成“自助游”与性别有关系.(2)X的所有可能取值为:0,1,2,3,依题意,X的分布列为:X0123P(X).【点评】本题考查独立性检验知识,考查分布列和数学期望,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.21.(12分)(2014•河北区三模)已知函数f(x)=.(Ⅰ)若a=2,求f(x)在(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间上的最小值;(Ⅲ)若f(x)在区间(1,e)上恰有两个零点,求a的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;51:函数的零点;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a=2代入可得f′(1)=﹣1,f(1)=,进而可得方程,化为一般式即可;(Ⅱ)可得x=为函数的临界点,分≤1,1<<e,,三种情形来讨论,可得最值;(Ⅲ)由(Ⅱ)可知当0<a≤1或a≥e2时,不合题意,当1<a<e2时,需,解之可得a的范围.【解答】解:(I)当a=2时,f(x)=,f′(x)=x﹣,∴f′(1)=﹣1,f(1)=,故f(x)在(1,f(1))处的切线方程为:y﹣=﹣(x﹣1)化为一般式可得2x+2y﹣3=0…

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论