江苏省盐城市中学2024届八年级数学第一学期期末统考试题含解析_第1页
江苏省盐城市中学2024届八年级数学第一学期期末统考试题含解析_第2页
江苏省盐城市中学2024届八年级数学第一学期期末统考试题含解析_第3页
江苏省盐城市中学2024届八年级数学第一学期期末统考试题含解析_第4页
江苏省盐城市中学2024届八年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市中学2024届八年级数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.要使分式有意义,则x的取值范围是()A. B. C. D.2.2019年8月8日晚,第二届全国青年运动会在太原开幕,中国首次运用5G直播大型运动会.5G网络主要优势在于数据传输速率远远高于以前的蜂窝网络,比4G蜂窝网络快100倍.另一个优势是较低的网络延迟(更快的响应时间),低于0.001秒.数据0.001用科学记数法表示为()A. B. C. D.3.已知线段,,线段与、构成三角形,则线段的长度的范围是()A. B. C. D.无法确定4.如图,已知,点,,,…在射线上,点,,,…在射线上,,,,…均为等边三角形,若,则的边长为()A.8 B.16 C.24 D.325.若分式有意义,则a满足的条件是()A.a≠1的实数 B.a为任意实数 C.a≠1或﹣1的实数 D.a=﹣16.将△ABC的三个顶点坐标的横坐标都乘以-1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.将原图形沿x轴的负方向平移了1个单位7.如果是方程ax+(a-2)y=0的一组解,则a的值是()A.1 B.-1 C.2 D.-28.已知点都在直线y=-3x+m上,则的大小关系是()A. B. C. D.9.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A.1、2、3 B.2、3、4C.3、4、5 D.4、5、610.如图,在中,cm,cm,点D、E分别在AC、BC上,现将沿DE翻折,使点C落在点处,连接,则长度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm二、填空题(每小题3分,共24分)11.已知,求__________.12._______13.如图,图①是一块边长为1,周长记为的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第块纸板的周长为,则=_____.14.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x=_______________.15.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=_______°.16.三角形的三个内角分别为75°,80°,25°,现有一条直线将它分成两个等腰三角形,那么这两个等腰三角形的顶角的度数分别是_____.17.下列关于x的方程①,②,③1,④中,是分式方程的是(________)(填序号)18.若分式方程有增根,则的值为__________.三、解答题(共66分)19.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,5),B(﹣3,2),C(﹣1,1),直线L过点(1,0)且与y轴平行.(1)作出△ABC关于直线L的对称图形△A′B′C′;(2)分别写出点A′,B′,C′的坐标.20.(6分)先化简,再求值:,其中m=.21.(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分)整理,分析过程如下:成绩学生甲014500乙114211(1)两组数据的极差、平均数、中位数、众数、方差如下表所示,请补充完整:学生极差平均数中位数众数方差甲83.78613.21乙2483.78246.21(2)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙”),理由为.22.(8分)某同学碰到这么一道题“分解因式:a4+4”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上4a2,再减去4a2,这样原式化为(a4+4a2+4)﹣4a2,……”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.你会吗?请完成此题.23.(8分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?24.(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.25.(10分)某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班__________24________初三(2)班24_________21(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察上图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.26.(10分)某校组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的球类运动进行了统计,并绘制如图1、图2所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类比赛提出合理化建议.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据分式分母不为0的条件进行求解即可.【题目详解】由题意得x-1≠0,解得:x≠1,故选A.2、A【分析】根据科学记数法的表示方法对数据进行表示即可.【题目详解】解:0.001=1×10-3,故选:A.【题目点拨】本题考查了科学记数法,掌握知识点是解题关键.3、C【分析】根据三角形的三边关系定理“任意两边之和大于第三边,任意两边之差小于第三边”即可得到的取值范围.【题目详解】∵,,线段与、构成三角形∴∴故选:C【题目点拨】考查了三角形三边关系定理,此类求三角形第三边的范围的题目,实际上就是根据三边关系列出不等式,然后解不等式即可.4、D【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=2,得出△A1B1A2的边长为2,再依次同理得出:△A2B2A3的边长为4,△A4B4A5的边长为:24=16,则△A5B5A6的边长为:25=1.【题目详解】解:∵△A1B1A2为等边三角形,

∴∠B1A1A2=60°,A1B1=A1A2,

∵∠MON=30°,

∴∠OB1A1=60°-30°=30°,

∴∠MON=∠OB1A1,

∴B1A1=OA1=2,

∴△A1B1A2的边长为2,

同理得:∠OB2A2=30°,

∴OA2=A2B2=OA1+A1A2=2+2=4,

∴△A2B2A3的边长为4,

同理可得:△A3B3A4的边长为:23=8,

△A4B4A5的边长为:24=16,

则△A5B5A6的边长为:25=1,

故选:D.【题目点拨】本题考查了等边三角形的性质和外角定理,难度不大,需要运用类比的思想,依次求出各等边三角形的边长,并总结规律,才能得出结论.5、A【解题分析】根据分式有意义的条件进行求解即可得.【题目详解】解:∵分式有意义,∴a﹣1≠0,解得:a≠1,故选A.【题目点拨】本题考查了分式的意义的条件,熟知分母不为0时分式有意义是解题的关键.6、B【解题分析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【题目详解】根据对称的性质,得三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.故选B.【题目点拨】这一类题目是需要识记的基础题.考查的侧重点在于学生的识记能力,解决的关键是对知识点的正确记忆.7、B【解题分析】将代入方程ax+(a−2)y=0得:−3a+a−2=0.解得:a=−1.故选B.8、A【分析】根据在y=-3x+m中,-3<0,则y随x的增大而减小,然后根据一次函数的增减性解答即可.【题目详解】∵直线中,∴y随x的增大而减小,又∵点都在直线上,且.∴y1>y2>y3故答案为A.【题目点拨】本题考查了一次函数的增减性,灵活运用一次函数的性质是正确解答本题的关键.9、C【分析】若三根木棒首尾顺次连接,能组成直角三角形,则此三角形的三边应符合勾股定理的逆定理,故只需根据勾股定理的逆定理对四个选项进行逐一解答即可.【题目详解】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、42+52≠62,不能组成直角三角形,故此选项错误;故选C.【题目点拨】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.熟记定理是解题的关键.10、C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【题目详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,

∵∠C=90°,AC=4cm,BC=3cm,

∴AB=5cm,

由折叠的性质知,BC′=BC=3cm,

∴AC′=AB-BC′=2cm.

故选:C.【题目点拨】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【题目详解】∵,

即,

∴,

解得,故答案为:1.【题目点拨】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.12、【分析】根据幂的运算法则即可求解.【题目详解】故答案为:.【题目点拨】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.13、【分析】根据等边三角形的性质(三边相等)求出等边三角形的面积P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.【题目详解】解:P1=1+1+1=3,P2=1+1+=,P3=1+++×3=,P4=1+++×2+×3=,…∴P3-P2===,P4-P3=,则Pn-Pn-1=,故答案为【题目点拨】本题考查了等边三角形的性质;通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题是关键.14、1或1【解题分析】∵一组数据2,3,4,5,x的方差与另一组数据5,1,7,8,9的方差相等,

∴这组数据可能是2,3,4,5,1或1,2,3,4,5,

∴x=1或1,

故答案是:1或1.15、1【分析】由于折叠,可得三角形全等,运用三角形全等得出∠ADE=∠FDE=55°,则∠BDF即可求.【题目详解】解:∵D、E为△ABC两边AB、AC的中点,即DE是三角形的中位线.∴DE∥BC∴∠ADE=∠B=55°∴∠EDF=∠ADE=55°∴∠BDF=180-55-55=1°.故答案为:1.16、80°,130°【分析】如图所示,首先在△ACB的内部做∠ACD=25°,从而可得到△ADC为等腰三角形,然后再证明△BDC为等腰三角形,从而可得到问题的答案.【题目详解】解:如图所示:∠A=25°,∠B=80°,∠ACB=75°,作∠ACD=∠A=25°,则三角形ADC为等腰三角形,且∠DCB=75°−25°=50°,由三角形的外角的性质可知∠BDC=∠A+∠ACD=50°,∴∠DCB=∠BDC,∴△BDC为等腰三角形.∴∠ADC=180°−50°=130°,∴这两个等腰三角形的顶角的度数分别是:80°,130°,故答案为80°,130°.【题目点拨】本题主要考查的是等腰三角形的判定和性质、三角形外角的性质,熟练掌握相关知识是解题的关键.17、②【解题分析】分式方程分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程,等号两边至少有一个分母含有未知数。【题目详解】根据分式方程的定义即可判断.符合分式方程的定义的是②.【题目点拨】本题考查的是分式方程的定义,解题的关键是掌握分式方程的定义.18、【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到,然后将的值代入整式方程求出的值即可.【题目详解】∵∴∵若分式方程有增根∴∴故答案是:【题目点拨】本题考查了分式方程的增根,掌握增根的定义是解题的关键.三、解答题(共66分)19、(1)△A′B′C′如图所示.见解析;(2)A′(4,5),B′(5,2),C′(3,1).【分析】(1)先分别作出A,B,C的对应点A′,B′,C′,再顺次连接即可.(2)根据A′,B′,C′的位置写出坐标即可.【题目详解】(1)△A′B′C′如图所示.(2)∵A(﹣2,5),B(﹣3,2),C(﹣1,1),∴它们关于直线l的对称点的坐标分别为:A′(4,5),B′(5,2),C′(3,1).【题目点拨】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.20、,.【分析】先根据分式的混合运算法则化简,再把m的值代入求值即可.【题目详解】原式===.当m=时,原式==-.【题目点拨】本题考查分式的运算,熟练掌握运算法则是解题关键.21、(1)14,84.5,81;(2)甲,理由:甲乙平均数一样,甲同学成绩的方差小于乙同学成绩的方差,则甲同学成绩更稳定,故选甲【分析】(1)依据极差、中位数和众数的定义进行计算即可;(2)依据平均数和方差的角度分析,即可得到哪个学生的水平较高.【题目详解】(1)甲组数据的极差=89-75=14,甲组数据排序后,最中间的两个数据为:84和85,故中位数=(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数为81;故答案为:14,84.5,81;(2)甲,乙两位同学的平均数相同,甲同学成绩的方差小于乙同学成绩的方差,则甲同学成绩更稳定,故选甲.【题目点拨】本题主要考查了统计表,众数,中位数以及方差的综合运用,熟练掌握众数,中位数以及方差知识是解决本题的关键.22、见解析【分析】先利用“配方法”分解因式,然后根据平方差公式因式分解即可解答.【题目详解】解:a4+4=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a)=(a2+2a+2)(a2﹣2a+2).【题目点拨】本题考查了配方法分解因式,公式法分解因式,掌握因式分解的方法是解题的关键.23、(1)每台A种设备0.3万元,每台B种设备1.3万元;(3)1.【解题分析】试题分析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据数量=总价÷单价结合花3万元购买A种设备和花7.3万元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(3)设购买A种设备m台,则购买B种设备(30﹣m)台,根据总价=单价×数量结合总费用不高于13万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.试题解析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据题意得:,解得:x=0.3.经检验,x=0.3是原方程的解,∴x+0.7=1.3.答:每台A种设备0.3万元,每台B种设备1.3万元.(3)设购买A种设备m台,则购买B种设备(30﹣m)台,根据题意得:0.3m+1.3(30﹣m)≤13,解得:m≥.∵m为整数,∴m≥1.答:A种设备至少要购买1台.24、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解题分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【题目详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【题目点拨】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论