2022-2023学年河南省洛阳市偃师大口乡中学高三数学理联考试卷含解析_第1页
2022-2023学年河南省洛阳市偃师大口乡中学高三数学理联考试卷含解析_第2页
2022-2023学年河南省洛阳市偃师大口乡中学高三数学理联考试卷含解析_第3页
2022-2023学年河南省洛阳市偃师大口乡中学高三数学理联考试卷含解析_第4页
2022-2023学年河南省洛阳市偃师大口乡中学高三数学理联考试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省洛阳市偃师大口乡中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设全集U是实数集R,M={x|>4},N={x|}都是U的子集,则图中阴影部分所表示的集合是

A.{x|-2≤x<1}

B.{x|-2≤x≤2}

C.{x|1<x≤2}

D.{x|x<2}参考答案:A2.下列四个函数中,既是定义域上的奇函数又在区间内单调递增的是A.

B.

C.

D.参考答案:D3.(5分)(2015?兰山区校级二模)若a<0,则()A.2a>()a>(0.2)aB.(0.2)a>()a>2aC.()a>(0.2)a>2aD.2a>(0.2)a>()a参考答案:B【考点】:指数函数的单调性与特殊点.【专题】:阅读型.【分析】:利用不等式的性质得到2a的范围;利用指数函数的单调性得到的范围;通过做商判断商与1的大小,判断出两者的大小.解:∵a<0,∴2a<0,()a>1,0.2a>1.所以2a最小而=()a∈(0,1),∴()a<0.2a.故选B【点评】:本题考查不等式的性质、指数函数的单调性、利用作商比较数的大小.4.甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150种

(B)180种

(C)300种

(D)345种参考答案:D5.对两个实数,定义运算“”,.若点在第四象限,点在第一象限,当变动时动点形成的平面区域为,则使成立的的最大值为

A.

B.

C.

D.参考答案:C略6.已知i是虚数单位,则复数的虚部是A.-1

B.1

C.-i

D.i参考答案:A由题得=所以的虚部是-1.故选A.

7.在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则A=(

).A.

B.

C.

D.参考答案:A略8.已知集合A={x|x2﹣2x≤0},B={﹣1,0,1,2},则A∩B=()A.{1} B.{0} C.{0,2} D.{0,1,2}参考答案:D【考点】交集及其运算.【分析】化简集合A、根据交集的定义求出A∩B即可.【解答】解:集合A={x|x2﹣2x≤0}={x|0≤x≤2},B={﹣1,0,1,2},∴A∩B={0,1,2}.故选:D.9.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为A. B.C. D.参考答案:C分析:由七巧板的构造,设小正方形的边长为1,计算出黑色平行四边形和黑色等腰直角三角形的面积之和。详解:设小正方形的边长为1,可得黑色平行四边形的底为高为;黑色等腰直角三角形的直角边为2,斜边为2,大正方形的边长为2,所以,故选C。点睛:本题主要考查几何概型,由七巧板的构造,设小正方形的边长为1,通过分析观察,求得黑色平行四边形的底和高,以及求出黑色等腰直角三角形直角边和斜边长,进而计算出黑色平行四边形和黑色等腰直角三角形的面积之和,再将黑色部分面积除以大正方形面积可得概率,属于较易题型。10.下面程序框图运行后,如果输出的函数值在区间[-2,]内,则输入的实数x的取值范围是

()

A.(-∞,0)∪[,]

B.(-∞,-1]∪[,]

C.(-∞,-1]

D.[,]参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(814)=

.参考答案:【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】利用赋值法,分别求出f(1)…f(9)得出f(x)的周期是6,故求出答案.【解答】解:∵4f(x)f(y)=f(x+y)+f(x﹣y),令x=1,y=0,则4f(1)f(0)=f(1)+f(1),∴f(0)=,再令x=y=1,得f(2)=﹣,再令x=2,y=1,得f(3)=﹣,再令x=2,y=2,得f(4)=﹣,再令x=3,y=2,得f(5)=,再令x=3,y=3,得f(6)=,再令x=4,y=3,得f(7)=,再令x=4,y=4,得f(8)=,再令x=5,y=4,得f(9)=﹣,由此可以发现f(x)的周期是6,∵2014÷6=135余4,.∴f(814)=f(135×6+4)=f(4)=.故答案为:﹣.【点评】本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题12.从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只一个被选取的概率为.参考答案:【考点】列举法计算基本事件数及事件发生的概率.【专题】概率与统计.【分析】根据古典概型的概率公式即可得到结论.【解答】解:从甲,乙,丙,丁4个人中随机选取两人,共有(甲乙),(甲丙),(甲丁),(乙丙),(乙丁),(丙丁)六种,其中甲乙两人中有且只一个被选取,则(甲丙),(甲丁),(乙丙),(乙丁),共4种,故甲乙两人中有且只一个被选取的概率为,故答案为:【点评】本题主要考查概率的计算,利用列举法是解决本题的关键.13.已知圆C的圆心是双曲线的上焦点,直线4x-3y-3=0与圆C相交于A,B两点,且|AB|=8,则圆C的方程为.参考答案:x2+(y-4)2=25略14.在的展开式中项的系数为__________.

参考答案:—160略15.若满足约束条件,且,则z的最大值为

.参考答案:7由题,画出可行域为如图区域,,当在处时,.16.设U=,A=,若,则实数m=____参考答案:-317.如右图所示,在棱长为2的正方体中,为棱的中点,点分别为面和线段上的动点,则周长的最小值为

.参考答案:将面与面折成一个平面,设E关于的对称点为M,E关于对称点为N,则周长的最小值为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)讨论f(x)的单调性;(2)当f(x)有最小值时,且最小值小于时,求a的取值范围.参考答案:(1)函数的定义域为,①当时,令得或,令得∴的递增区间是和;递减区间是②当时,恒成立,所以的递增区间是③当时令得或;令得∴的递增区间是和,递减区间是④当时,令得,令得∴的递增区间是,递减区间是;(2)由(1)知当时,在取得最小值,最小值为……………(8分)∴等价于令则在单调递减且,∴当时,;当时,;当时,.∴的取值范围是.19.已知抛物线C的方程为y2=2px(p>0),抛物线的焦点到直线l:y=2x+2的距离为. (Ⅰ)求抛物线C的方程; (Ⅱ)设点R(x0,2)在抛物线C上,过点Q(1,1)作直线交抛物线C于不同于R的两点A,B,若直线AR,BR分别交直线l于M,N两点,求|MN|最小时直线AB的方程. 参考答案:【考点】抛物线的简单性质. 【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程. 【分析】(Ⅰ)可以得到抛物线的焦点为,而根据点到直线的距离公式得到,而由p>0即可得出p=2,从而得出抛物线方程为y2=4x; (Ⅱ)容易求出R点坐标为(1,2),可设AB:x=m(y﹣1)+1,,直线AB方程联立抛物线方程消去x可得到y2﹣4my+4m﹣4=0,从而有y1+y2=4m,y1y2=4m﹣4.可写出直线AR的方程,联立y=2x+2即可得出,而同理可得到,这样即可求出,从而看出m=﹣1时,|MN|取到最小值,并且可得出此时直线AB的方程. 【解答】解:(Ⅰ)抛物线的焦点为,,得p=2,或﹣6(舍去); ∴抛物线C的方程为y2=4x; (Ⅱ)点R(x0,2)在抛物线C上; ∴x0=1,得R(1,2); 设直线AB为x=m(y﹣1)+1(m≠0),,; 由得,y2﹣4my+4m﹣4=0; ∴y1+y2=4m,y1y2=4m﹣4; AR:=; 由,得,同理; ∴=; ∴当m=﹣1时,,此时直线AB方程:x+y﹣2=0. 【点评】考查抛物线的标准方程,抛物线的焦点坐标,以及点到直线的距离公式,曲线上的点的坐标和曲线方程的关系,过定点的直线方程的设法,以及直线的点斜式方程,韦达定理,弦长公式,复合函数的单调性,要清楚函数的单调性.20.第31届夏季奥林匹克运动会将于2016年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).

第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国3851322816俄罗斯2423273226(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为,丙猜中国代表团的概率为,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.参考答案:【考点】离散型随机变量的期望与方差.【分析】(Ⅰ)作出两国代表团获得的金牌数的茎叶图,通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值,俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.(Ⅱ)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)两国代表团获得的金牌数的茎叶图如下通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.…(Ⅱ)由已知得X的可能取值为0,1,2,3,设事件A、B、C分别表示甲、乙、丙猜中国代表团,则P(X=0)=P()P()P()=(1﹣)2(1﹣)=,P(X=1)==+(1﹣)2×=,P(X=2)==()2(1﹣)+C()(1﹣)()=,P(X=3)=P(A)P(B)P(C)=()2()=,故X的分布列为:X0123P…EX==.…21.

已知函数.(1)解关于的不等式;(2)设实数,且函数的最小值为,求证:.参考答案:(1)不等式可化为或或解得或或所以不等式的解集为.………………4分(2),,故,即……6分法一:因,所以所以,当且仅当时取等号.…………10分法二:因且

所以……10分 当且仅当时取等号.法三:因,所以,故当且仅当时取等号.…………10分法四:因且,所以,所以故当且仅当时取等号.………………10分22.已知函数f(x)=|x﹣4|,g(x)=a|x|,a∈R.(Ⅰ)当a=2时,解关于x的不等式f(x)>2g(x)+1;(Ⅱ)若不等式f(x)≥g(x)﹣4对任意x∈R恒成立,求a的取值范围.参考答案:【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)当a=2时,不等式f(x)>2g(x)+1为|x﹣4|>4|x|+1,分类讨论求得x的范围.(2)由题意可得|x﹣4|≥a|x|﹣4对任意x∈R恒成立.当x=0时,不等式显然成立;当x≠0时,问题等价于a≤对任意非零实数恒成立,再利用绝对值三角不等式求得a的范围.【解答】解:(Ⅰ)当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论