2024届新高考数学一轮复习配套练习专题7.6 数学归纳法 (新教材新高考)(练)含答案_第1页
2024届新高考数学一轮复习配套练习专题7.6 数学归纳法 (新教材新高考)(练)含答案_第2页
2024届新高考数学一轮复习配套练习专题7.6 数学归纳法 (新教材新高考)(练)含答案_第3页
2024届新高考数学一轮复习配套练习专题7.6 数学归纳法 (新教材新高考)(练)含答案_第4页
2024届新高考数学一轮复习配套练习专题7.6 数学归纳法 (新教材新高考)(练)含答案_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届新高考数学一轮复习配套练习专题7.6数学归纳法练基础练基础1.(2021·全国高三专题练习(理))用数学归纳法证明等式时,从到等式左边需增添的项是()A.B.C.D.2.(2020·全国高三专题练习)已知n为正偶数,用数学归纳法证明1-+…+=2时,若已假设n=k(k≥2,k为偶数)时命题成立,则还需要用归纳假设证()A.n=k+1时等式成立 B.n=k+2时等式成立C.n=2k+2时等式成立 D.n=2(k+2)时等式成立3.(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+++…+<n(n∈N*,n≥2)”时,由n=k(k≥2)时不等式成立,推证n=k+1时,左边应增加的项数是()A.2k-1 B.2k-1C.2k D.2k+14.(2021·全国高三专题练习(理))用数学归纳法证明不等式时,可将其转化为证明()A.B.C.D.5.(2019·浙江高二月考)利用数学归纳法证明“”的过程中,由假设“”成立,推导“”也成立时,左边应增加的项数是()A. B. C. D.6.(2020·上海徐汇区·高三一模)用数学归纳法证明能被整除时,从到添加的项数共有__________________项(填多少项即可).7.(2019·湖北高考模拟(理))已知正项数列满足,前项和满足,则数列的通项公式为______________.8.(2019届江苏省扬州市仪征中学摸底)已知正项数列an中,a1=1,9.(2021·全国高三专题练习)数列满足.(1)计算,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.10.(2021·全国高三专题练习(理))已知数列{an}满足:,点在直线上.(1)求的值,并猜想数列{an}的通项公式;(2)用数学归纳法证明(1)中你的猜想.练提升TIDHNEG练提升TIDHNEG1.(2021·全国)已知数列满足,,则当时,下列判断一定正确的是()A. B.C. D.2.(2021·浙江高三专题练习)已知数列,满足,,则()A. B.C. D.3.(2020·浙江省桐庐中学)数列满足,,则以下说法正确的个数()①;②;③对任意正数,都存在正整数使得成立;④.A.1 B.2 C.3 D.44.(2021·全国高三其他模拟(理))已知数列满足:,,前项和为(参考数据:,,则下列选项错误的是().A.是单调递增数列,是单调递减数列B.C.D.5.(2021·上海市建平中学高三开学考试)有限集的全部元素的积称为该数集的“积数”,例如的“积数”为2,的“积数”为6,的“积数”为,则数集的所有非空子集的“积数”的和为___________.6.(2021·浙江高三期末)已知数列满足,前项和为,若,且对任意的,均有,,则_______;______.7.(2020·江苏南通·高三其他)数列的前n项和为,记,数列满足,,且数列的前n项和为.(1)请写出,,满足的关系式,并加以证明;(2)若数列通项公式为,证明:.8.(2020届浙江省“山水联盟”高三下学期开学)已知等比数列的公比,且,是,的等差中项,数列满足:数列的前项和为.(1)求数列、的通项公式;(2)数列满足:,,证明9.(2020届浙江省嘉兴市3月模拟)设数列的前项和为,已知,,成等差数列,且,.(1)求数列的通项公式;(2)记,,证明:,.10.已知点Pn(an,bn)满足(1)求过点P1(2)试用数学归纳法证明:对于n∈N*,点Pn练真题TIDHNEG练真题TIDHNEG1.(2020·全国高考真题(理))设数列{an}满足a1=3,.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.2.(2017浙江)已知数列满足:,.证明:当时(Ⅰ);(Ⅱ);(Ⅲ).3.(湖北省高考真题)已知数列的各项均为正数,,e为自然对数的底数.(Ⅰ)求函数的单调区间,并比较与e的大小;(Ⅱ)计算,,,由此推测计算的公式,并给出证明;(Ⅲ)令,数列,的前项和分别记为,,证明:.4.(2021·全国高三专题练习)设数列{an}满足a1=3,.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.5.(江苏省高考真题)已知函数,设为的导数,.(Ⅰ)求的值;(2)证明:对任意的,等式成立.6.(2021·上海普陀区·高三其他模拟)如图,曲线与直线相交于,作交轴于,作交曲线于,……,以此类推.(1)写出点和的坐标;(2)猜想的坐标,并用数学归纳法加以证明.专题7.6数学归纳法练基础练基础1.(2021·全国高三专题练习(理))用数学归纳法证明等式时,从到等式左边需增添的项是()A.B.C.D.【答案】C【解析】分别写出和时,等式左边的表达式,比较2个式子,可得出答案.【详解】当时,左边,共个连续自然数相加,当时,左边,所以从到,等式左边需增添的项是.故选:C.2.(2020·全国高三专题练习)已知n为正偶数,用数学归纳法证明1-+…+=2时,若已假设n=k(k≥2,k为偶数)时命题成立,则还需要用归纳假设证()A.n=k+1时等式成立 B.n=k+2时等式成立C.n=2k+2时等式成立 D.n=2(k+2)时等式成立【答案】B【解析】直接利用数学归纳法的证明方法,判断选项即可.【详解】解:由数学归纳法的证明步骤可知,假设为偶数)时命题为真,则还需要用归纳假设再证下一个偶数,即时等式成立,不是,因为是偶数,是奇数,故选:.3.(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+++…+<n(n∈N*,n≥2)”时,由n=k(k≥2)时不等式成立,推证n=k+1时,左边应增加的项数是()A.2k-1 B.2k-1C.2k D.2k+1【答案】C【解析】根据数学归纳法、不等式特点知有左侧,有左侧,即可判断增加的项数.【详解】时,左边=,而n=k+1时,左边=,增加了,共(2k+1-1)-(2k-1)=2k项,故选:C.4.(2021·全国高三专题练习(理))用数学归纳法证明不等式时,可将其转化为证明()A.B.C.D.【答案】B【解析】各选项左侧一样,要转化证明不等式只需右端的部分小于,利用排除法即可.【详解】根据放缩法证明不等式,首先排除A,C;D选项当时,左端值为,右端为,不等式不成立,故只要证明B成立,原不等式即成立.故选:B.5.(2019·浙江高二月考)利用数学归纳法证明“”的过程中,由假设“”成立,推导“”也成立时,左边应增加的项数是()A. B. C. D.【答案】C【解析】利用数学归纳法证明“”的过程中,假设“”成立;当时,左边为故增加的项数为项.故答案为:C.6.(2020·上海徐汇区·高三一模)用数学归纳法证明能被整除时,从到添加的项数共有__________________项(填多少项即可).【答案】5【解析】分别写出和时的对应的结果,再比较差异,得到答案.【详解】当时,原式为:,当时,原式为,比较后可知多了,共5项.故答案为:57.(2019·湖北高考模拟(理))已知正项数列满足,前项和满足,则数列的通项公式为______________.【答案】【解析】当时,;当时,;当时,;当时,,猜想得,故,下面用数学归纳法证明:①,满足,②假设时,结论成立,即,可得,则,,也满足,结合①②可知,,故答案为.8.(2019届江苏省扬州市仪征中学摸底)已知正项数列an中,a1=1,【答案】见解析.【解析】当n=1时,a2=1+a11+a假设n=k(k∈N*)时,ak<ak+2-=a所以,n=k+1时,不等式成立.综上所述,不等式an9.(2021·全国高三专题练习)数列满足.(1)计算,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.【答案】(1);;;.(2)证明见解析.【详解】分析:(1)将n进行赋值,分别求得前三项的数值,猜想归纳处通项;(2)利用数学归纳法的证明步骤,证明猜想即可.详解:(1)当时,,∴;当时,,∴;当时,,∴;由此猜想;(2)证明:①当时,结论成立,②假设(,且)时结论成立,即,当时,,∴,∴,∴当时结论成立,由①②可知对于一切的自然数,成立.10.(2021·全国高三专题练习(理))已知数列{an}满足:,点在直线上.(1)求的值,并猜想数列{an}的通项公式;(2)用数学归纳法证明(1)中你的猜想.【答案】(1),,;;(2)证明见解析.【解析】(1)先将点坐标代入直线方程,得到递推关系,再依次求出前几项,猜想通项公式;(2)结合递推关系,用数学归纳法证明.【详解】(1)点在直线上可知,数列满足:,

,.可猜得.

(2)当时,成立,

假设当时,成立,则当时,成立,

就是说,猜想正确;综上,.练提升TIDHNEG练提升TIDHNEG1.(2021·全国)已知数列满足,,则当时,下列判断一定正确的是()A. B.C. D.【答案】C【解析】根据特殊值法,分别令,,即可判断ABD错误;再由数学归纳法证明C选项正确.【详解】因为数列满足,,若,则,不满足,故A错误;若,则,,,不满足,故D错误;又此时,不满足,故B错误;因为,所以,当且仅当,即时,等号成立;构造函数,,,所以,则在上显然恒成立,所以在上单调递增;因此在上单调递增,所以,猜想,对任意恒成立;下面用数学归纳法证明:(1)当时,,显然成立;(2)假设当时,不等式成立,即恒成立;则时,,因为函数在上单调递增;所以,即成立;由(1)(2)可得;,对任意恒成立;故C正确.故选:C.2.(2021·浙江高三专题练习)已知数列,满足,,则()A. B.C. D.【答案】B【解析】转化条件为,令,通过导数可得单调递增,通过数学归纳法可证明如果,则,再令,通过导数证明后,适当放缩可得,进而可证明,即可得解.【详解】因为,所以,令,则,当时,,单调递增,由题意,,如果,则,设,则,所以在上单调递增,在上单调递减,所以,即,因为,所以,所以,所以对于任意的,均有,所以.故选:B.3.(2020·浙江省桐庐中学)数列满足,,则以下说法正确的个数()①;②;③对任意正数,都存在正整数使得成立;④.A.1 B.2 C.3 D.4【答案】D【解析】利用二次函数的性质及递推关系得,然后作差,可判断①,已知等式变形为,求出平方和可得②成立,利用简单的放缩可得,可判断③,利用数学归纳法思想判断④.【详解】,若,则,∴,∴,①正确;由已知,∴,②正确;由及①得,,∴,显然对任意的正数,在在正整数,使得,此时成立,③正确;(i)已知成立,(ii)假设,则,又,即,∴,由数学归纳法思想得④正确.∴4个命题都正确.故选:D.4.(2021·全国高三其他模拟(理))已知数列满足:,,前项和为(参考数据:,,则下列选项错误的是().A.是单调递增数列,是单调递减数列B.C.D.【答案】C【解析】设,则有,,,构建,求导分析可知导函数恒大于零,即数列,都是单调数列,分别判定,,即得单调性,数列与的单调性一致,可判定A选项正确;B、C选项利用分析法证明,可知B正确,C错误;D选项利用数学归纳法证分两边证,即可证得.【详解】∵,,∴,,,设,,,则,令,则,∴单调递增,将,看作是函数图象上两点,则,∴数列,都是单调数列,,同理,,,即,,∴单调递增,单调递减,而数列与的单调性一致,∴是单调递增数列,是单调递减数列,A正确;由得,要证,即证,即,即证,也即要证,等价于,显然时,,时,,故成立,∴不等式成立.B正确;欲证,只需证,即即,显然成立,故,所以,故C选项错误;欲证,因单调性一致则只需证,只需证因为,若,则;又因为,若,则,由数学归纳法有,则成立故D选项正确。故选:C5.(2021·上海市建平中学高三开学考试)有限集的全部元素的积称为该数集的“积数”,例如的“积数”为2,的“积数”为6,的“积数”为,则数集的所有非空子集的“积数”的和为___________.【答案】1010【解析】先利用数学归纳法证明一个结论:对于有限非空数集,积数和,由此即可计算得到答案.【详解】先利用数学归纳法证明一个结论:对于有限非空数集,积数和当时,,成立;假设时,当时,综上可得,,则数集的所有非空子集的“积数”的和为:故答案为:1010.6.(2021·浙江高三期末)已知数列满足,前项和为,若,且对任意的,均有,,则_______;______.【答案】12146【解析】由递推关系计算出,再计算出,然后可以计算,归纳出的通项公式(可用数学归纳法证明),求得和.【详解】因为,,由已知,,,,,,,,,归纳结论,,证明:(1),由上面知已经成立;假设时,假设成立,即,,则,,,由数学归纳法知,,对一切成立..故答案为:1;2146.7.(2020·江苏南通·高三其他)数列的前n项和为,记,数列满足,,且数列的前n项和为.(1)请写出,,满足的关系式,并加以证明;(2)若数列通项公式为,证明:.【答案】(1),证明见解析;(2)证明见解析.【解析】(1),,之间满足的关系式是:,证明如下:当时,,所以成立,假设当时,成立,即,当时,,所以成立,所以成立.(2)由(1)得,即,因为,所以,当时,,成立;假设当时,成立,,当时,,所以当时,不等式成立,所以.证毕.8.(2020届浙江省“山水联盟”高三下学期开学)已知等比数列的公比,且,是,的等差中项,数列满足:数列的前项和为.(1)求数列、的通项公式;(2)数列满足:,,证明【答案】(1),;(2)详见解析.【解析】(1)由题意,得,即,解得或,已知故.,.当时,,当时,,当时,满足上式,,.(2)法1.,,累加得当,,当,∴法2.先用数学归纳法证明当,.①当时,,左式>右式,不等式成立.②假设时,不等式成立,即当时,,因为在上单调递增,由,得,即,可得,不等式也成立.③由①②得证当,..9.(2020届浙江省嘉兴市3月模拟)设数列的前项和为,已知,,成等差数列,且,.(1)求数列的通项公式;(2)记,,证明:,.【答案】(1);(2)证明见解析.【解析】(1)因为,,成等差数列,即,当时,,两式相减得,所以是公比为2的等比数列,即,即,由,得,所以的通项公式.(2)方法一(放缩法):因为,,所以,当时,所以,当时,,取到“”号,综上所述,,方法二(数学归纳法):因为,,所以,当时,左边,右边,原不等式成立;假设当时,原不等式成立,即,那么,当时,左边,即时也成立,由此可知,原不等式对于任意的均成立.10.已知点Pn(an,bn)满足(1)求过点P1(2)试用数学归纳法证明:对于n∈N*,点Pn【答案】(1)2x+y-1=0.(2)见解析.【解析】(1)由P1的坐标为(1,−1)知:a1=1,b1=−1.∴b2=b11-4a12=13,∴点P2的坐标为13∴直线l的方程为2x+y-1=0.(2)要证明原问题成立只需证明点Pn都满足2x+y=1即可①当n=1时,2a1+b1=2×1+(−1)=1,成立.②假设n=k(k∈N*,k⩾1)时,2ak+bk=1成立,即则2ak+1+bk+1=2ak⋅bk+1+bk+1=bk1-4∴当n=k+1时,命题也成立.由①②知,对n∈N∗,都有2an+bn=1,即点Pn在直线l上练真题TIDHNEG练真题TIDHNEG1.(2020·全国高考真题(理))设数列{an}满足a1=3,.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.【答案】(1),,,证明见解析;(2).【解析】(1)由题意可得,,由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即,证明如下:当时,成立;假设时,成立.那么时,也成立.则对任意的,都有成立;(2)由(1)可知,,①,②由①②得:,即.2.(2017浙江)已知数列满足:,.证明:当时(Ⅰ);(Ⅱ);(Ⅲ).【答案】见解析【解析】(Ⅰ)用数学归纳法证明:当时,假设时,,那么时,若,则,矛盾,故.因此所以因此(Ⅱ)由得记函数函数在上单调递增,所以=0,因此故(Ⅲ)因为所以得由得所以故综上,.3.(湖北省高考真题)已知数列的各项均为正数,,e为自然对数的底数.(Ⅰ)求函数的单调区间,并比较与e的大小;(Ⅱ)计算,,,由此推测计算的公式,并给出证明;(Ⅲ)令,数列,的前项和分别记为,,证明:.【答案】(Ⅰ).(Ⅱ);;.(Ⅲ)见解析.【解析】(Ⅰ)的定义域为,.当,即时,单调递增;当,即时,单调递减.故的单调递增区间为,单调递减区间为.当时,,即.令,得,即.①(Ⅱ);;.由此推测:.②下面用数学归纳法证明②.(1)当时,左边右边,②成立.(2)假设当时,②成立,即.当时,,由归纳假设可得.所以当时,②也成立.根据(1)(2),可知②对一切正整数n都成立.(Ⅲ)由的定义,②,算术-几何平均不等式,的定义及①得,即.4.(2021·全国高三专题练习)设数列{an}满足a1=3,.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.【答案】(1),,,证明见解析;(2).【解析】(1)利用递推公式得出,猜想得出的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得,,由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即,证明如下:当时,成立;假设时,成立.那么时,也成立.则对任意的,都有成立;(2)由(1)可知,,①,②由①②得:,即.5.(江苏省高考真题)已知函数,设为的导数,.(Ⅰ)求的值;(2)证明:对任意的,等式成立.【答案】(Ⅰ)(Ⅱ)证明:见解析.【解析】(Ⅰ)由已知,得于是所以故(Ⅱ)证明:由已知,得等式两边分别对x求导,得,即,类似可得,,.下面用数学归纳法证明等式对所有的都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即.因为,所以.所以当n=k+1时,等式也成立.综合(i),(ii)可知等式对所有的都成立.令,可得().所以().6.(2021·上海普陀区·高三其他模拟)如图,曲线与直线相交于,作交轴于,作交曲线于,……,以此类推.(1)写出点和的坐标;(2)猜想的坐标,并用数学归纳法加以证明.【答案】(1),,;,,;(2),证明见解析.【解析】(1)将直线,曲线方程联立,由即可求得,由垂直关系可得直线方程,令即可求得坐标,依次类推即可求得结果;(2)由(1)可归纳出;设,,由直线方程可求得坐标,由直线斜率为可推导得到递推关系式;根据递推关系式,利用数学归纳法即可证得结论.【详解】(1)由得:,即;直线方程为:,即,令,解得:,;直线方程为:,由得:,即;直线方程为:,即,令,解得:,;直线方程为:,由得:,即;直线方程为,即,令,解得:,;(2)由(1)猜想的坐标为,设,,则直线的方程为:,令,解得:,,直线的斜率为,即,即,,用数学归纳法证明的坐标如下:①当时,满足;②假设当时,成立,那么当时,由得:,解得:,即当时,成立;综上所述:.专题8.1空间几何体及其三视图和直观图练基础练基础1.(2020·广西兴宁�南宁三中高一期末)已知一个几何体的三视图如图所示,则此几何体的组成方式为()A.上面为圆台,下面为圆柱 B.上面为圆台,下面为棱柱C.上面为棱台,下面为棱柱 D.上面为棱台,下面为圆柱2.(2021·江西师大附中高二月考(理))如图是一个棱锥的正视图和侧视图,它们为全等的等腰直角三角形,则该棱锥的俯视图不可能是()A. B.C. D.3.(2021·江苏高一期末)已知一个圆锥的母线长为2,其侧面积为,则该圆锥的高为()A.1 B. C. D.24.(2020·河北易县中学高三其他(文))若圆台的母线与高的夹角为,且上、下底面半径之差为2,则该圆台的高为()A. B.2 C. D.5.(2020届浙江绍兴市诸暨市高三上期末)某几何体的正视图与侧视图如图所示:则下列两个图形①②中,可能是其俯视图的是()A.①②都可能 B.①可能,②不可能C.①不可能,②可能 D.①②都不可能6.(2021·石家庄市第十七中学高一月考)如图,某沙漏由上、下两个圆锥组成,每个圆锥的底面直径和高均为,现有体积为的细沙全部漏入下圆锥后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此锥形沙堆的高度为()A. B. C. D.7.(2021·云南弥勒市一中高一月考)如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.8 B.6 C. D.8.(2021·浙江高三三模)如图,等腰直角三角形在平面上方,,若以为旋转轴旋转,形成的旋转体在平面内的投影不可能的是()A. B. C. D.9.(2020·上海市进才中学高二期末)设是半径为的球的直径,则两点的球面距离是________.10.(2020·全国)如图为一几何体的平面展开图,按图中虚线将它折叠起来,画出它的直观图.练提升TIDHNEG练提升TIDHNEG1.(2021·四川高一期末(理))某圆柱的高为,底面周长为,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.2.【多选题】(2021·宁波市北仑中学高一期中)如图,棱长为的正四面体形状的木块,点是的中心.劳动课上需过点将该木块锯开,并使得截面平行于棱和,则下列关于截面的说法中正确的是()A.截面不是平行四边形B.截面是矩形C.截面的面积为D.截面与侧面的交线平行于侧面3.(2021·湖北随州市·广水市一中高一月考)如图所示,矩形是水平放置一个平面图形的直观图,其,,则原图形是()A.正方形B.矩形C.菱形D.梯形4.(2021·肇州县第二中学高一月考)如图是利用斜二测画法画出的的直观图,已知,且的面积为16,过点作轴于点,则的长为()A. B. C. D.15.(2021·宁夏大学附属中学高一月考)三棱锥及其三视图中的正视图和侧视图如图所示,则棱的长为()A. B.C. D.6.(2021·江苏省镇江中学)点是平面外一点,且,则点在平面上的射影一定是的()A.外心 B.内心 C.重心 D.垂心7.(2021·上海高二期末)圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________8.(2021·浙江绍兴市·高一期末)已知四面体的所有棱长均为4,点满足,则以为球心,为半径的球与四面体表面所得交线总长度为______.9.(2020届浙江杭州四中高三上期中)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是_____,最长棱长为_____.10.(2019·全国高考真题(理))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.练真题TIDHNEG练真题TIDHNEG1.(2021·全国高考真题)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A. B. C. D.2.(2021·北京高考真题)定义:24小时内降水在平地上积水厚度()来判断降雨程度.其中小雨(),中雨(),大雨(),暴雨(),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A.小雨 B.中雨 C.大雨 D.暴雨3.(2020·全国高考真题(理))如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为()A. B. C. D.4.(2019年高考全国Ⅲ卷理)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线

B.BM≠EN,且直线BM,EN是相交直线

C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线5.(2018·北京高考真题(文))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2C.3 D.46.(2021·全国高考真题(理))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).专题8.1空间几何体及其三视图和直观图练基础练基础1.(2020·广西兴宁�南宁三中高一期末)已知一个几何体的三视图如图所示,则此几何体的组成方式为()A.上面为圆台,下面为圆柱 B.上面为圆台,下面为棱柱C.上面为棱台,下面为棱柱 D.上面为棱台,下面为圆柱【答案】A【解析】结合图形分析知上面为圆台,下面为圆柱.故选:A.2.(2021·江西师大附中高二月考(理))如图是一个棱锥的正视图和侧视图,它们为全等的等腰直角三角形,则该棱锥的俯视图不可能是()A. B.C. D.【答案】C【解析】根据棱锥的三视图想象原几何体的结构,可以在正方体中想象描出原几何体,确定其结构.【详解】若几何体为三棱锥,由其正视图和侧视图可知,其底面在下方且为直角三角形,故ABD均有可能,若几何体是四棱锥,由其正视图和侧视图可知,其底面在下方,且为正方形,俯视图为正方形,但对角线应从左上到右下,C不正确.故选:C.3.(2021·江苏高一期末)已知一个圆锥的母线长为2,其侧面积为,则该圆锥的高为()A.1 B. C. D.2【答案】C【解析】由侧面积求出圆锥的底面圆半径,再根据勾股定理可求得其高.【详解】设圆锥的底面圆的半径为,母线为,则,所以其侧面积为,解得,所以圆锥的高为.故选:C.4.(2020·河北易县中学高三其他(文))若圆台的母线与高的夹角为,且上、下底面半径之差为2,则该圆台的高为()A. B.2 C. D.【答案】D【解析】设上、下底面半径分别为,,圆台高为,由题可知:,即,所以.故选:D5.(2020届浙江绍兴市诸暨市高三上期末)某几何体的正视图与侧视图如图所示:则下列两个图形①②中,可能是其俯视图的是()A.①②都可能 B.①可能,②不可能C.①不可能,②可能 D.①②都不可能【答案】A【解析】若是①,可能是三棱锥;若是②,可能是棱锥和圆锥的组合;所以①②都有可能,故选:A.6.(2021·石家庄市第十七中学高一月考)如图,某沙漏由上、下两个圆锥组成,每个圆锥的底面直径和高均为,现有体积为的细沙全部漏入下圆锥后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此锥形沙堆的高度为()A. B. C. D.【答案】C【解析】根据圆锥的体积公式列方程求出沙堆的高.【详解】解:细沙漏入下部后,圆锥形沙堆的底面半径为,设高为,则沙堆的体积为,解得,所以圆锥形沙堆的高度为.故选:.7.(2021·云南弥勒市一中高一月考)如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.8 B.6 C. D.【答案】A【解析】根据斜二测画法的规则,得到原图形的形状为平行四边形,进而求得其边长,即可求解.【详解】由斜二测画法的规则,可得原图形为是一个平行四边形,如图所示,因为水平放置的一个平面图形的直观图的边长为1的正方形,可得,所以原图形中,在直角中,可得,所以原图形的周长为.故选:A.8.(2021·浙江高三三模)如图,等腰直角三角形在平面上方,,若以为旋转轴旋转,形成的旋转体在平面内的投影不可能的是()A. B. C. D.【答案】C【解析】对直线与平面的位置关系进行分类讨论,判断出投影的形状,即可得出合适的选项.【详解】若,则形成的旋转体在平面内的投影如D选项所示;若,则形成的旋转体在平面内的投影为正方形;若与所成的角的取值范围是时,则形成的旋转体在平面内的投影如A、B选项所示.投影不可能如C选项所示.故选:C.9.(2020·上海市进才中学高二期末)设是半径为的球的直径,则两点的球面距离是________.【答案】【解析】是半径为的球的直径,则两点所对的球心角为,球面距离为.故答案为:.10.(2020·全国)如图为一几何体的平面展开图,按图中虚线将它折叠起来,画出它的直观图.【答案】见解析【解析】由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.练提升TIDHNEG练提升TIDHNEG1.(2021·四川高一期末(理))某圆柱的高为,底面周长为,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.【答案】B【解析】根据三视图分析出所在的位置,然后结合圆柱的侧面展开图即可求出结果.【详解】由三视图还原几何体,如图:即点在距离点在底面投影的圆弧处,沿所在的母线得到如图所示的侧面展开图,圆柱的底面周长即为侧面展开图的长,圆柱的高即为侧面展开图的宽,而线段的距离即为所求到的路径中的最短路径,因为底面周长为,所以,又因为高为,则,所以,故选:B.2.【多选题】(2021·宁波市北仑中学高一期中)如图,棱长为的正四面体形状的木块,点是的中心.劳动课上需过点将该木块锯开,并使得截面平行于棱和,则下列关于截面的说法中正确的是()A.截面不是平行四边形B.截面是矩形C.截面的面积为D.截面与侧面的交线平行于侧面【答案】BCD【解析】过点构建四边形,通过相关直线间的平行关系进一步证明为平行四边形,找对应线之间的垂直证明截面为矩形,从而计算截面面积【详解】解:如图所示,在正四面体中,4个面均为正三角形,由于点为的中心,所以位于的中线的外,分别取的三等分点,则∥,∥,∥,∥,所以∥,∥,所以截面为平行四边形,所以A错误,延长交于,连接,由于为的中心,所以为的中点,因为,所以,因为,所以平面,所以,因为∥,∥,所以,所以截面为矩形,所以B正确,因为,所以,所以C正确,对于D,截面平面,∥,平面,平面,所以∥平面,所以D正确,故选:BCD3.(2021·湖北随州市·广水市一中高一月考)如图所示,矩形是水平放置一个平面图形的直观图,其,,则原图形是()A.正方形B.矩形C.菱形D.梯形【答案】C【解析】由已知得原图为平行四边形,,利用勾股定理计算边长得到,可判断原图形的形状.【详解】因为,,所以直观图还原得,,四边形为平行四边形,,则,,,,,所以,故原图形为菱形.故选:C.4.(2021·肇州县第二中学高一月考)如图是利用斜二测画法画出的的直观图,已知,且的面积为16,过点作轴于点,则的长为()A. B. C. D.1【答案】A【解析】利用面积公式,求出直观图的高,求出,然后在直角三角形中求解即可【详解】解:由直观图可知,在中,,因为的面积为16,,所以,所以,所以,因为,轴于点,所以,故选:A5.(2021·宁夏大学附属中学高一月考)三棱锥及其三视图中的正视图和侧视图如图所示,则棱的长为()A. B.C. D.【答案】B【解析】根据几何体的三视图,结合几何体的数量关系,在直角中,即可求解.【详解】如图所示,根据三棱锥及其三视图中的正视图和侧视图,可得底面中,点为的中点,,且底面,又由点为的中点,且根据侧视图,可得,在直角中,可得又由,在直角中,可得.故选:B.6.(2021·江苏省镇江中学)点是平面外一点,且,则点在平面上的射影一定是的()A.外心 B.内心 C.重心 D.垂心【答案】A【解析】过点作平面,因为,得到,即可求解.【详解】如图所示,过点作平面,可得因为,可得,所以为的外心.故选:A.7.(2021·上海高二期末)圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________【答案】2【解析】求出圆锥轴截面顶角大小,判断并求出所求面积最大值.【详解】如图,是圆锥轴截面,是一条母线,设轴截面顶角为,因为圆锥的高为1,底面半径为,所以,,所以,,设圆锥母线长为,则,截面的面积为,因为,所以时,.故答案为:2.8.(2021·浙江绍兴市·高一期末)已知四面体的所有棱长均为4,点满足,则以为球心,为半径的球与四面体表面所得交线总长度为______.【答案】【解析】根据正四面体的结构特征求得到面的距离,进而利用球的截面的性质求得各面所在平面与球的截面圆的半径,注意与各面的三角形内切圆的半径比较,确定此截面圆是否整个在面所在的三角形内,进而确定球与各面的交线,得到球与四面体表面所得交线总长度.【详解】已知四面体ABCD的所有棱长均为4,所以四面体ABCD是正四面体,因为点O满足,所以为正四面体ABCD的中心设正三角BCD的中心为F,正三角ACD的中心为G,CD的中点为E,则连接则.

则,,,

因为球O的半径为,所以球O被平面截得圆半径为,

因为正三角形BCD的边长为4,所以正三角形内切圆半径为,故球O与四面体ABCD的每一个面所得的交线为正好为内切圆,每个内切圆的周长为,所以球与四面体ABCD表面所得交线总长度.

故答案为:.9.(2020届浙江杭州四中高三上期中)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是_____,最长棱长为_____.【答案】【解析】由已知中的三视图可得该几何体是一个以直角梯形为底面的四棱锥,且梯形上下边长为1和2,高为2,如图:,,,,,平面,,∴底面的面积,∴几何体的体积,可得,最长棱长为:,故答案为:;.10.(201

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论